Co-funded by the
Erasmus+ Programme
of the European Union

e **
DTAM

DIGITAL TRANSFORMATION IN
ADVANCED MANUFACTURING

Intfroduction tot Advanced sensors

Site: DTAM Online Training Platform Printed by: loanna Matouli
Course: Advanced sensors Date: Friday, 8 December 2023, 4:35 PM
Book: Intfroduction fot Advanced sensors

The European Commission's support for the production of this publication does not constitute an
endorsement of the contents, which reflect the views only of the authors, and the Commission
cannot be held responsible for any use which may be made of the information contained therein.

. What is a sensor?

. Application of sensors in manufacturing
. loT networking

. System- and application software

. Connections to the web

. Data storage

. Linux

Table of contents

1. Whatis a sensore

A sensor is an artificial implementation of what in biology is called a sense. Most sensors are electronic or mechanical, but there
also are software and virtual sensors. A sensor helps a machine perceive the environment or collect information that can be used
to control processes in industry and computer science.

A sensor measures a physical quantity in any of the following domains: radiation, pressure, temperature, magnetism, level,
movement, light intensity and chemistry. Sensors convert the measured quantity into a standardised 0/4-20 mA or 0-10 V control
signal for further processing, for example via an analogue-digital converter to a Programmable Logic Controller (PLC) or Distributed
Control System (DCS). In this course, we focus on the Raspberry Pi fo collect and process data (see unit 2).

Figure 1: Pi with sensor

Sensors can be made using the same technology as for microprocessors and memories in PCs, but also with other technologies.
This will be discussed in more detail later.

2. Application of sensors in manufacturing

Sensors are key devices in manufacturing environments. Processes in manufacturing can be automated by means of sensors. This
will enable making the right choice at the right fime. To achieve this, sensors collect data. This can be different kinds of data, such
as pressure, temperature, magnetism, height, movement and light.

Indicators that can be checked in the process are established in advance. These are called Key Performance Indicators (KPIs).
KPIs are an operational tool fo monitor the performance of a process with the aim of improving it.

There are two main types of KPIs: Input & Output. Output KPIs are the most important KPIs, as they relate to the result you are
looking for. These are, for example, the number of products that a manufacturing process produces. With Input KPIs you look at

actions that you take to realise a certain output. Think, for example, of checking whether a certain raw material has reached the
correct temperature for processing.

3. loT networking

Thirty billion things provide trillions of gigabytes of data. How can they work together to enhance our decision-making and improve
our lives and our businesses? Enabling these connections are the networks that we use daily. These networks provide the
foundation for the Internet and the digitised world.

The methods that we use fo communicate are evolving continually. Whereas we were once limited by cables and plugs,
breakthroughs in wireless and digital technology have significantly extended the reach of our communications.

Forming the foundation of the digitised world, networks come in all shapes and sizes. They can range from simple networks
consisting of two computers to networks connecting millions of devices.

Simple networks in homes enable connectivity fo the Internet. They also make it possible to share resources, such as printers,
documents, pictures and music, between a few local computers.

In businesses and large organisations, networks can provide products and services to customers through their connection to the
Internet. Networks can also be used on an even broader scale to provide consolidation, storage and access to information on
network servers. Networks enable email, instant messaging and collaboration among employees. In addition, networks enable
connectivity to new places, making machines more valuable in industrial environments.

The Internet is the largest network in existence and effectively provides the "electronic skin" that surrounds the planet. In fact, the
term "internet" means "network of networks". The Internet is literally a collection of interconnected private and public networks.
Businesses, small office networks and home networks connect to the Internet.

Watch the following 5-minute video on "Networks':

0:00

NETWORK TYPES

There are many different types of modern networks, characterised by their geographic size, the number of devices or networks
that they connect, and whether they support mobile devices or not. Networks can also be characterised by their function and
purpose.

Personal Area Network (PAN)

Personal area networks are small networks where connected wireless devices are within personal reach. Connecting your
smarfphone to your car using Bluetooth is an example of a PAN.

Local Area Network (LAN)

LANs are typically networks in a small or local geographic area, such as a home, small business or department within a large
corporation. LANs can connect two or more devices, including computers, printers and wireless devices. LANs provide access to
larger wide area networks (WANs) and the Internet.

Wide Area Networks (WANs)

The term WAN typically refers to a collection of LANs that provides intfer-LAN and Internet connectivity for businesses and
governments.

The Internet is a multi-layer global network system that connects hundreds of millions of computers. The Internet is not owned by
any one person or organisation. This large system comprises multiple local and global networks serving private, public, business,
academic and government purposes. It allows for the exchange of data between more than a hundred Internet-linked countries
worldwide. This makes the Internet an enormous carrier of diverse information resources and services. These include text and multi-
media data, email, online chat, VolP, file transfer and file sharing, ecommerce and online gaming.

Wireless Networks

Wireless networks are computer networks that use electromagnetic waves instead of wires to carry signals over the various parts of
the network. Wireless networks can be described as PANs, LANs, or WANs, depending on their scope.

Because browsing the Internet is considered a normal daily activity, wireless access points have become commonplace in foday's
communication infrastructure. Public Internet-connected places include libraries, airports, coffee shops, hotels, and specialised
Internet cafés. Thanks to Wi-Fi technology, the Internet can now be accessed by every person with a laptop, tablet or
smartphone.

The Cloud

The term "cloud" is used in many ways. The cloud is not as much a type of network as it is a collection of data centres or groups of
connected servers that are used to store and analyse data, provide access to on-line applications and provide backup services
for personal and corporate use. Cloud services are provided by different organisations.

The Edge
The edge refers to the physical "edge" of a corporate network.
Fog Computing

With the rising number of sensors used by the Internet of Things, there is often a need to store the sensor data securely and closer to
where the data can be analysed. The analysed data can then be used quickly and effectively to update or modify processes
within the organisation. The fog is located at the edge of a business or corporate network. Servers and computer programs allow
the data to be pre-processed for immediate use. The pre-processed data can then be sent to the cloud for more in-depth
computing if required.

The Internet of Things (IoT) is the connection of millions of smart devices and sensors connected to the Internet. These connected
devices and sensors collect and share data for use and evaluation by countless organisations. These organisations include
businesses, cities, governments, hospitals and individuals. The loT has been made possible in part due to the advent of cheap
processors and wireless networks. Previously inanimate objects such as doorknolbs or light bulbs can now be equipped with an
infelligent sensor that can collect and transfer data to a network.

Researchers estimate that over 3 million new devices are connected to the Internet each month. Researchers also estimate that in
the next four years, there will be over 30 billion connected devices worldwide.

Perhaps a third of connected devices will be computers, smartphones, tablets and smart TVs. The remaining two-thirds will be other
"things": sensors, actuators and newly invented intelligent devices that monitor, control, analyse and optimise our world.

Some examples of infelligent connected sensors are: smart doorbells, garage doors, thermostats, sports wearables, pacemakers,
fraffic lights, parking spots, and many others. The variety of different objects that could become intelligent sensors is limited only by
our imagination.

loT devices connected to the network

A sensor needs fo be connected to a network so that the gathered data can be stored and shared. This requires either a wired
Ethernet connection or a wireless connection to a controller. Controllers are responsible for collecting data from sensors and
providing network or Internet connectivity. Controllers may have the ability to make immediate decisions, or they may send data
to a more powerful computer for analysis. This more powerful computer might be in the same LAN as the controller or might only
be accessible through an Internet connection.

Sensors often work together with a device called an actuator. Actuators take electrical input and transform that into physical
action. If, for example, a sensor detects excess heat in a room, the sensor sends the temperature reading to a microcontroller. The
microcontroller can then send the data to an actuator, which turns on the air conditioner.

Many new devices such as fitness wearables, implanted pacemakers, air meters in a mine shaft and water meters in a farm field all
require wireless connectivity. Because many sensors are "out in the field" and are powered by batteries or solar panels, power
consumption is an important consideration. Low-powered connection options must be used to optimise and extend the availability
of the sensor.

A sensor needs fo be connected to a network so that the gathered data can be stored and shared. This requires either a wired
Ethernet connection or a wireless connection to a controller. Controllers are responsible for collecting data from sensors and
providing network or Internet connectivity. Controllers may have the ability to make immediate decisions, or they may send data
to a more powerful computer for analysis. This more powerful computer might be in the same LAN as the controller or might only
be accessible through an Internet connection.

Sensors often work together with a device called an actuator. Actuators take electrical input and transform that into physical
action. If, for example, a sensor detects excess heat in a room, the sensor sends the temperature reading to a microcontroller. The
microcontroller can then send the data to an actuator, which turns on the air conditioner.

Many new devices such as fitness wearables, implanted pacemakers, air meters in a mine shaft and water meters in a farm field all
require wireless connectivity. Because many sensors are "out in the field" and are powered by batteries or solar panels, power
consumption is an important consideration. Low-powered connection options must be used to optimise and extend the availability
of the sensor.

Chapter 3 "Using_a device to work with sensors" describes different devices that can work with sensors and communicate
measurements with databases and other devices.

Automation through sensors
Automation is any process that is self-driven and reduces, then eventually eliminates, the need for human intervention.

Automation was once confined to the manufacturing industry. Highly repetitive tasks such as automobile assembly were turned
over to machines and the modern assembly line was born. Machines are excellent at repeating the same task without getting
fired and without the errors that humans are prone to make in such jobs. This results in greater output, also because machines can
work 24 hours a day without breaks. Machines also provide a more uniform product.

The loT opens up an entirely new world in which tasks previously requiring human intervention can be automated. As we have
seen, the loT allows the collection of vast amounts of data that can be quickly analysed to provide information that can help
guide an event or process.

As we continue to embrace the benefits of the loT, automation becomes increasingly important. Access to huge amounts of
quickly processed sensor data made people think about how to apply the concepts of machine learning and automation to
everyday tasks. Many routine tasks are being automated to improve their accuracy and efficiency.

Automation is often related to the field of robofics. Robots are used in dangerous conditions such as mining, firefighting and
cleaning up industrial accidents, reducing the risk to humans. They are also used in such tasks as automated assembly lines.

We now see automation everywhere, from self-service checkouts at shops and automatic environmental confrols in buildings to
autonomous cars and planes. How many automated systems do you encounter in a single day?

Chapter 2 "Sensors" describes different sensors for measuring different values.

4. System- and application software

There are two common types of computer software: system software and application software.

Application software programs are created to accomplish a certain task or collection of tasks. For example, Cisco Packet Tracer is
a network simulation program that allows users to model complex networks and ask "what if" questions about network behaviour.

System software works between the computer hardware and the application program. It is the system software that controls the
computer hardware and allows the application programs to function. Common examples of system software include Linux, Apple
OSX and Microsoft Windows.

Both system software and application software are created using a programming language. A programming language is a formal
language designed to create programs that communicate instructions to computer hardware. These programs implement
algorithms that are self-contained, step-by-step sets of operations to be performed.

Some computer languages compile their programs into a set of machine-language instructions. C++ is an example of a compiled
computer language. Others interpret these instructions directly without first compiling them into machine language. Python is an
example of such an interpreted programming language. In this module we will focus on Python.

When the programming language is determined and the process is diagrammed in a flow chart, program creation can begin.
Most computer languages use similar program structures.

Chapter 4 "Programming_loT with Python on a Raspberry Pi" shows the steps for getting started with programming loT solutions.

5. Connections to the web

Before you can start writing Python programs to connect to the Internet, you need fo understand a bit about how the Internet
works. It is basically a giant computer network, but one that follows certain rules and uses certain protocols, and we need to utilise
those protocols in order to do anything on the Web.

Web Communication Protocols

Most common web traffic is encapsulated in the HyperText Transfer Protocol Secure (HTTPS) format. A protocol is simply an
agreement between two communicating parties (in this case, computers) as fo how that communication is to take place. It
includes information such as how data is addressed, how to determine whether errors have occurred during transmission (and how
to handle those errors), how the information is to travel between the source and destination and how that information is formatted.
The "https" in front of most URLs (Uniform Resource Locators) defines the protocol used to request the page. Other common
protocols used are TCP/IP (Transmission Control Protocol/Internet Protocol), UDP (User Datagram Protocol), SMTP (Simple Mail
Transfer Protocol), and FTP (File Transfer Protocol). Which protocol is used depends on factors such as the fraffic type, the speed of
the requests, whether the data streams need to be served in order and how forgiving of errors those streams can be.

When you request a web page with your browser, a lot is happening behind the scenes. Let's say you type
https://www.dtamproject.eu into your locatfion bar. Your computer, knowing that it is using the HTTPS protocol, first sends
www.dtamproject.eu to its local DNS (Domain Name System) server to determine to what Internet address it belongs. The DNS
server responds with an IP address—Iet's say, 168.119.138.10. That is the address of the server that holds the web pages for that
domain. The Domain Name System maps IP addresses to names, because it is much easier for you and me to remember
"www.dtamproject.eu” than it is to remember "168.119.138.10".

Now that your computer knows the server's IP address, it initiates a TCP connection with that server using a three-way "handshake".
The server responds and your computer asks for the page index.html. The server responds and then closes the TCP connection.
Your browser then reads the coding on the page and displays it. If there are other parts of the page it needs, such as PHP code or
images, it requests those parts orimages from the server and displays them as well.

6. Data storage

Data storage

Depending on the loT application, loT devices may be required to store data for a period of time before sending it out for
processing. This scenario is common with devices that do not maintain constant connections to their gateways or conftrollers. A
good example of this situation is vehicle trackers installed in transport tfrucks. The system may be built to tolerate periods when the
frackers are out of range and cannot communicate to transmit the location of the fruck. If this happens, the trackers will store the
data in the device itself. As another example, consider a connected car. If it is damaged beyond repair, the insurance company
may choose to auction if, along with the owner's data sfill stored in the car's storage devices. In both examples the data should be
kept encrypted to avoid tampering or data theft.

Desktop and laptop storage devices (hard drives and SSDs) have included support for built-in encryption for a while now. Known
as self-encrypting drives, these storage devices stand out because the encryption capability is built info the drive conftroller,
allowing the drive itself to encrypt and decrypt, independent of the operating system.

While it is not included in every loT device, manufacturers are beginning to release new devices with self-encrypting flash memory.
Be it in thumb drive or SD card format, the concept of self-encrypting storage devices is very important for IoT.

Cloud services often rely on servers to provide service. Data stored in these servers must also be encrypted to avoid data
tampering or theft. Regular backups are mandatory to minimise losses in case of an emergency.

Data transmission

|oT devices are often small, inexpensive devices, with little to no security. Although such devices are computers, they rely on
constrained memory and computing resources and may not support complex and evolving security algorithms. Modern
encryption algorithms may require more processing power than is available in the loT device. In addition to physical security, the
loT device must be able to protect its own firmware and the data it transmits. If data is not properly secured through encryption, it
can be intercepted, captured or manipulated while in transit. Any of these actions may compromise system confidence and
make the data unreliable.

To mitigate this problem, it is important to ensure that loT devices are running the latest version of their firmware and protocols. Also
ensure that communication uses protocols that provide secure encryption by default. The encryption algorithm must be strong,
with older algorithms tending to present exploitable weaknesses. Regardless of the encryption method chosen, make sure all
endpoints agree on the most secure parameters available. A common attack is to frick devices to agree on sub-optimal security
parameters under which the connection can be exploited. It is also important to use and verify digital certificates. This is often a
challenge with small loT devices because of their limited memory and CPU capacity.

7. Linux

Servers and cloud endpoints should also be secured and use strong encryption algorithms before communicating with loT devices.
If the loT device relies on an intermediary device such as a gateway or conftroller, this intermediary device must also use strong
encryption. Naturally, intermediary devices should also be kept up to date with the latest software to keep the device from
becoming the weak link that breaks the chain.

Linux

Linux is an operating system dating back to 1991. It was created, and is currently maintained, by a community of programmers.
Linux is open source, fast, reliable and small. It requires very little hardware resources to run, and is highly customisable. Linux is part
of several platforms and can be found in anything from "wristwatches to supercomputers”. Linux is also a very popular choice in loT
devices.

Another important aspect of Linux is that it is designed to be on the network. Network operations and connections are simple in
Linux, making it a good choice for network professionals and administrators. Anyone can get the kernel's source code, inspect it,
modify it and re-compile it at will. Companies and users are free to modify, repackage and run the software. They are able to
redistribute the program with or without charges.

Linux distribution is the term used to describe different Linux packages created by different companies. Linux distributions (or
distros) include the Linux kernel, plus a number of customised tools and software packages. While some of these will provide and
charge for Linux support (geared towards Linux-based businesses), the majority of them also offer their distribution for free without
support. Debian, Red Hat, Ubuntu, Slackware and Mint are just a few examples of Linux distributions.

Raspbian is a Linux operating system distribution created specifically for the Raspberry Pi. Raspbian is a Debian Linux variation and,
as such, maintains its Linux structure.

Linux shell

The Linux operating system can be divided into kernel and shell. The kernel can be thought of as the OS itself, while the shell is just a
program that runs on the OS and offers user-OS interaction functionality.

To interact with the machine's hardware, the user interacts with the shell, which interacts with the kernel, which in turn interacts with
the hardware.

The shell is a command interpreter and therefore the terms shell, terminal, console and CLI are often used interchangeably. This
course uses the term terminal to refer to shell. When a user logs in on the system, the login program checks the username and
password; if the credentials are correct, the login program calls the shell. From this point on, an authorised user can begin
inferacting with the OS through text-based commands.

Historically, when no graphical interface was available, the shell was text-based with no support for a mouse or advanced visual
features. Also called a Command Line Interface (CLI), the text-based shell was the only way for the user to interact with the OS.
Today, the Linux shell is still extremely important, as it provides low level access to the system. While many modern Linux distributions
include support for graphical user interfaces (GUIs), the shell is still considered the most efficient method of interacting with the
system. This is especially frue when the interaction is related to system maintenance or troubleshooting.

As an example of the user-shell-kernel interaction, suppose a user wants to delete a file named myFile. The user types rm myFile. rm
is the command to remove files and myfFile is the name of the file to be deleted. The shell searches the file system for the rm
program and then asks the kernel, via system calls, to execute the rm program with the parameter myFile. While the process is
running, the shell will be unavailable to the user, presenting no prompt to signify that status. When the rm myFile process has
finished running, the shell displays the prompt to the user, indicating that it is ready and waiting for further commands

Different kinds of sensors and their operation

Site: DTAM Online Training Platform Printed by: loanna Matouli
Course: Advanced sensors Date: Friday, 8 December 2023, 4:36 PM
Book: Different kinds of sensors and their operation

Table of contents

1. Overview

2. Temperature/Humidity/Air pressure/Gas sensors

3. Motion sensors

4. Navigation modules

5. Raspberry Pi Sensors = Wireless / Infrared (IR) / Bluetooth
6. Motors

7. Analogous Raspberry Pi Sensors

8. Power/Current Supply

9. Displays

10. Other Modules, Components and Raspberry Pi Sensors

1. Overview

The described Raspberry Pi sensors, modules and components are divided into the following categories:
o Temperature / Humidity / Air Pressure / Gas

¢ Motion Sensors

¢ Navigation Modules

o Wireless / Infrared (IR) / Bluetooth

e Motors

¢ Ancalogue Sensors

e Current Supply

¢ Displays

e Other Modules, Components and Sensors

2. Temperature/Humidity/Air pressure/Gas sensors

The DHT11 and DHT22 sensors measure humidity as
well as temperature. Only one GPIO is used. The

"y
: "y : difference between the two is mainly the
L.

L :: L. measuring range and accuracy. The white DHT22
\:_:‘\:.' . :.:' can measure all humidity ranges from 0-100% with
et W an accuracy of 2%. By comparison, the DHT11

- -] —
3 :‘_ ¥ * (blue) is only able to measure areas of 20-90%
Ny S o lc; B humidity and, above all, the accuracy is
i T significantly worse, at 5%.

The DS18B20 and DS18S20 represent very simple
sensors. These Raspberry Pi sensors are addressed
via the so-called 1-wire bus. An advantage is that
many different 1-wire components can be

NN connected in series and read out by a single
\\?‘\\ GPIO. However, these modules cannot measure
\ ' additional information such as humidity or air

pressure. The DS18B20 is particularly suitable for
outdoor use, as there are also water-resistant
versions available. With a measuring range from
-55°C to +125°C it is well suited even for non-
everyday applications.

Barometer:

Measuring the air pressure can be meaningful in
weather stations and similar projects. This is best
done using the BMP180, which is controlled via 12C
on the Raspberry Pi. In addition to the air pressure,
it reads out the tfemperature and the altitude.
However, this last value is not very accurate. If you
need the height, you should read the values with
a GPS receiver.

Gas sensor:

The MQ gas sensors can detect different gases at
room temperature. Other gases are supported
depending on the model. The MQ-2 recognises
methane, butane, LPG and smoke, the MQ3
detects alcohol, ethanol, smoke and more. You
can find a list of all MQ sensors and their supported
gases here.

These sensors can be very hot and should not be
fouched directly! Since these modules also work
analogously with 5V, you also need a MCP3008 as
well as a 3.3V-5V TIL to read the signal.

You should take care that these sensors can be
very hot and they should not be touched directly.
Since these modules also work analogically with
5V, you need also a MCP3008 as well as a 3.3V-5V
TIL to read the sign

Humidity sensor:

This analogue humidity sensor is ideal for
automatic irrigation systems. It is placed in the
ground and measures the humidity by current
flowing between the strands. The more humid the
earth in between, the higher the (analogue)
signal. To read the value with the Raspberry Pi, the
MCP3008 is needed (Arduinos recognise analogue
signals directly).

A problem with analogue moisture sensors is that
they erode over time and are not always very
precise. Capacitive sensors prevent these
problems. The relative humidity is calculated by
means of the frequency. However, a frequency
divider is also suitable for use with the Raspberry Pi.

3. Motion sensors

The PIR motion sensor has some advantages over
other similar products: apart from the low price, it
only sends a signal if something moves. This allows
you to wait for signal flanks using the GPIOs. In
addition, resistance can be varied, so that a signal
is only sent when the movement is close or when
changes that are already far away are perceived.

In addition to outdoor projects, the PIR can also be
used in buildings — whether to activate the lighting
or, as | use if, fo furn on my touchscreen for home
automation as soon as someone approaches if.

The HC-SR04 sensor is not a distance / motion
detector, but an ultrasonic sensor. Using a small
frick, it is nevertheless possible to measure distances.
You can derive the distance by measuring the time
elapsed between transmitting and receiving an
ultrasound signal, as the sound velocity in the airis
known. | explain the details in the futorial. The wide
opening angle is an aspect that must, however, be
considered: since the ulfrasound propagates not
only in a straight line, but at an angle of about 15°,
the signal is first reflected from the nearest point in
this area — which can be also an external point.

As a rough estimate, or for moving robofs, it is
nevertheless useful, also because of the low price.

You can check for binary states by means of
magnetic sensors / reed relays. The magnetic relay
is opened as soon as a magnet is in the vicinity.
Otherwise, the access is closed. If voltage is then
passed through, you can check the condition.

These magnetic sensors are suitable for inspecting
windows and doors by mounting them on the frame
and checking whether the door / window is open or
closed.

With the GP2YOAQ2YK infrared distance meter,
much more accurate measurements can be
performed, as with e.g. the HC-SR04. The module is
limited to a range of 20-150cm. Alternatively, the
similar sensor GP2YOA7 10KOF can be used, which
has a range of 100 to 500cm

4. Navigation modules

The most common and best-known GPS receiver is
the NEO-6M module. All GPS position data can be
determined with the help of orbiting satellites. In
addition, it is compatible with the minicom and
gpsd Raspberry Pi packages, which makes reading
the coordinates very easy.

As an alternative to GPS modules connected via
the GPIOs, USB GPS receivers can also be used.
They have the advantage that (almost) all are
compatible with Windows, Linux and Mac and no
addifional connection is necessary. On the other
hand, these modules are usually more expensive,
but they are not inferior in terms of accuracy. As
such, the type of receiver is an individual
preference.

A gyroscope (circular instrument) is used to detect
the rotation along the three axes. The MPU 6050
sensor also contains an acceleration sensor. This
module can be used in robot arms to determine the
angle of rotation.

As with analogue compasses, the directional
display can also be read digitally. The HMC5883L
sensor, which is read out via 12C, which returns an
angle in radians, is suitable for this purpose. As with
a normal compass, the value can be confounded
by metal objects nearby.

If the Raspberry Piis connected to the Internet, it
can request the exact time. This could be a
problem in applications where no (permanent)
Internet connection is given but the date and the
exact time are nevertheless important (car PC,
weather station, etc.). A so-called Realtime Clock
(RTC) module can help: Once inifialised, it saves the
current fime using a small battery, i.e. even without
power supply. Such modules are installed on
computer mainboards, which is why you do not
have to re-adjust the fime of the computer every
fime you restart. The Raspberry Pi / Arduino does not
carry an RTC module as a default feature, but it can
be refrofitted.

5. Raspberry Pi Sensors — Wireless / Infrared (IR) / Bluetooth

®
o
= =
® *,
i 4 e
‘o] .’_.
Qe
~ es
£ F o
P2

One of the simplest methods to fransmit signals via radio is by means of a 433 MHz
fransmiftter and receiver. These sets are very cheap and they are used in many
projects. This way, you can let several Raspberry Pis communicate with each other, for
example. Many other devices also work with 433 MHz radio signals, such as garage
doors or radio-controlled sockets, and these codes can be recorded and sent for
specific tasks

A more advanced method for wireless communication is the use of the 2.4 GHz
frequency. The advantages compared to the 433 MHz fransmission rate are mainly
that a larger amount of data can be transferred at once. Thus, whole sentences and
commands can be sent with a signal / data package. A second Raspberry Pior an
Arduino can also be equipped with a 2.4 GHz receiver / transmitter, receive
commands from a "base station" and send back data.

In the field of home automation, wireless sockets are almost a standard. The vast
majority of these devices work with 433 MHz radio signals. By reading the codes of the
remote control with a receiver on the Raspberry Pi, these radio sockets can be
switched individually.

There are different models, usually pure switchable radio sockets, but dimmable lamp
sockets are also offered.

You should pay attention to one criterion: There are models with a "generic" code,
which means the code is randomly generated and changes. These frequencies are
hard to read out. Sockets in which the code is freely selectable, on the other hand,
are very easy to confrol.

The Si470x module offers the option to upgrade the Pi to a radio receiver, which can
be very interesting in Car PCs or Raspberry Pi Jukeboxes. As with conventional radios,
the frequency and certain opfions can be adjusted via software. If that were not
enough, you can also use your Pi as a radio station.

The Raspberry Pi has not always had an integrated Bluetooth module. Before the
model 3 was published, neither Bluetooth nor Wi-Fi modules were onboard. The
inexpensive Zero model also comes without a Bluetooth adapter. Since almost every
mobile phone supports this communication method as standard, it is easy to
exchange pictures and other files between a smartphone and Raspberry Pi. Other
projects such as confrolling the Pi via Bluetooth commands are also possible.

The Raspberry Piis used in many outdoors projects, e.g. as a weather station or for
monitoring. However, many functions may be restricted if no (or only a weak) Wi-Fi
signal is available. If you still want to have access to the Pi and also receive the data
of such an outside project, an Internet connection is necessary. Mobile surfsticks that
are often available as gifts for data rate confracts can be useful here. With such a
stick and a SIM card with data volume, the Pi can be permanently online. In addition,
it is also possible to use the stick to send and receive text messages, for example to
remotely control the Raspberry Pi using a mobile phone.

Most remote controls use infrared LEDs fo transmit signals. These codes can be read
and stored easily with an infrared receiver. With the LIRC package, these codes can
be sent with an IR transmitter diode. For example, a TV can be controlled with the
Raspberry Pi.

In addition, there are also IR LEDs, which can be used as a light barrier.

Although standard laser modules do not have great functionality (can be switched on
and off), they are used in various interesting projects. There are, for example, projects
with distance measuring devices that use a camera and a laser module. The laser is
switched on and off very quickly and pictures are recorded. The distance can then be
calculated by means of the beam set.

Due to the exchangeable mirrors at the head of the laser modules, different patterns
such as grids are possible.

6. Motors

Servomotor: unlike ordinary motors, servomotors can be individually controlled. Only
the indication of the angle of rotation for moving the motor is necessary. PWM (pulse
width modulation) signals are sent to the motor. The Raspberry Pi can use this method
of tfransmission. Using the Python GPIO library or WiringPi is particularly easy.

Stepper motors: stepper motors are motors that divide a full rotation into a number of
equal steps. Two built-in electromagnets move the axis through different poles. What
the polarity looks like is specified in the motor's data sheet.

One of the most popular stepper motors (because it has a lot of steps and is
nevertheless cheap) is the 28BYJ-48 model. This motor has 512 steps, each consisting of
8 sequences. This means that a full rotation consists of 4,096 steps (or one step is made
per 0.087°).

Servo board: using PWM, servos can be confrolled directly from the Raspberry Pi.
However, as soon as you want fo control several servomotors, you either need more
GPIOs or more power. The PCA9685 servo driver board is ideally suited for this purpose
because you can confrol up to 16 motors per board via 12C. And if this is not enough,
it is even possible to connect several boards one after the other. It is also possible to
connect an external power supply. This is the best board if you want to use a robot
arm, for example.

ULN 2003: 28BY J-48 stepper motors are often supplied with a driver board. The board
usually has a ULN2003 IC, which holds the voltage for the 5V motor, but can be
confrolled with 3.3V. This is important because the GPIOs are protected and no
transistor or relay is needed.

L293D: an alternative driver IC is the L293D. The advantage of this module, compared
to the ULN2003, is that it can also be used with voltages higher than 5V. Because
many alternative stepper motors (e.g., fewer steps for faster rotation or higher pulling
force) require more than 5V, they must be powered by an external current source. The
L293 IC is ideal for controlling these motors. It is, incidentally, even possible to confrol
two motors simultaneously (individually).

A4988: this IC is another way to control step motors. It is especially designed for motors
in 3D printers and can withstand voltages of 8V to 35V with a current of 1 amp. Since it
can get hot very quickly, a cooling sink is included on the chip of the breakout board.

/. Analogous Raspberry Pi Sensors

MCP3008 Analogue-to-digital converter: Unlike the
Arduino, the Raspberry Pi does not have its own
analogue 1O pins. This means that you cannot
simply read out analogue modules. The MCP3008
module helps you: It enables the use of analogue
modules with the Raspberry Pi and as such this
digital converter is required for all analogue
modules on the Raspberry Pi.

Joystick: One of these analogue modules is a 2-axis
joystick. Two potentiometers (see below) for X and Y
axes are installed, which allow more or less voltage
to pass through the movement. Conversion of the
analogue value into a digital value results in
numbers between 0 (no voltage) and 1,023 (full
voltage). In the centre, a digital value of approx.
512 is returned on both axes

Potentiometer/Rotary switch: Potentiometers are
basically rotatable resistors. The resistor value can
be changed easily by rotating the confrol knob.
Each module has a maximum resistance (minimum
is zero). In addition to joysticks, potentiometers are
also used, e.g. in brightness or volume controllers.

Raindrop sensor: a rainwater sensor can be used to
determine whether it is raining or how much
precipitation is falling. It works analogously and can
be read with the MCP3008. Depending on the
amount of water, the capacitance is increased and
a stronger analogue signal is read out.

Heartbeat/Pulse sensor: With a pulse sensor, the
heart rate can be read out on the Raspberry Pi. The
analogously detected value changes depending
on the pulse. This is again converted with an ADC
and the pulse is determined on the basis of the last
measured values.

8. Power/Current Supply

Relay: The GPIOs of the Raspberry Pi work with 3.3V,
although it also has a 5V pin. However, many
devices require a higher voltage. In order not to
combine the circuits, you can use relays, which are
basically switches. This has the advantage that you
can also switch circuits with higher voltages with the
Raspberry Pi, without risking anything

Buck Converter/Step Down Module: With the
LM2596 (and similar) modules, higher voltages can
be regulated downwards. For example, you can
regulate the current of (rechargeable) batteries to
the required 5V USB input voltage. However,
alternating current (AC) is not allowed, but only
direct current (DC) as supplied by batteries..

3.3V =5V TIL I12C Logic Level Converter:

Some modules and sensors for the Arduino produce
5V signals, but this would destroy the GPIOs, since
those work with 3.3V. Here, a level converter can be
used to further control the signals.

It is important to ensure that bi-directional level
converters are purchased so that you can both
send and receive signals.

9. Displays

Official 7" Touchscreen:

In September 2015, the Raspberry Pi Foundation
finally infroduced the official touchscreen display. It
measures 7" and has a resolution of 800x480 pixels.
The 10-point capacitive fouchscreen is connected
through the DSI port and does not occupy any USB
ports or GPIOs. The inifial startup is very easy and
you do not need any additional software (only a
current version of Raspbian or NOOBS).

Other 7" Touchscreen:

Before the Raspberry Pi Foundation infroduced its
tfouchscreen module, many other companies
developed touch displays for the Pi. The
advantages are mostly the better resolution and
sometimes even a bigger size (10" or more). Most of
them do not use the DSI port, which means that the
HDMI and USB port (for touch) and / or several GPIO
pins will be used. Moreover a separate driver is
usually needed

3.2" Touchscreens:

Not everyone needs displays of 7" or larger;
sometimes a smaller touchscreen is also enough,
but the choice is relatively large. Sizes between 2.4
and 4.3 inches are very common, but these
modules have almost exclusively resistive touch. You
can connect them, depending on the model, via
the GPIOs or (if available) directly via HDMI.

In addition to fouchscreens, there are also pure
character displays. The most common are 16x02
and 20x04 displays, which specifies the number of
characters per line and the number of rows. Almost
all of these displays have an HD44780 conftroller,
which can be easily accessed with the Raspberry Pi.

7-Segment Display:

7-segment displays are often used to display
numbers and, as the name implies, have seven
luminous segments, which can be addressed
individually. In order not to occupy too many GPIOs,
generally a controller like the MAX7219 is used.

In addition to the usual 7-segment displays, there
are also models that contain 15 controllable
segments and can also display letters (even if it
does not look great).

10. Other Modules, Components and Raspberry Pi Sensors

Led Matrix:

The square 8x8 LED matrices are available in red and green. It is possible to confrol each individual
LED with the help of the MAX7219 IC. In addition, many of these modules can be plugged
tfogether, resulting in a large dot display. The signal is sent via SPI. | have written a library, which let’s
you easily confrol these matrices.

Optical Fingerprint Sensor:

Fingerprint Sensor can be used to implement safety-relevant applications. For example, the
fingerprints of different persons are stored and authorization rights are given to them. Electronic
saves or door locks can be built. A password can also be requested in conjunction with a numpad.
The interrogation of the sensor is surprisingly accurate and takes place by means of features. After
il reading or storing the imprint, it is even possible to export the imprint as an image.

Arduino Uno:

The Raspberry Pi can also be used as a micro-conftroller, but it has a lot more functions because it
runs an operating system. A true micro-controller is the Arduino. It can also read analog sensors.
The Arduino can also be operated very easily on and with the Raspberry Pi, via USB or 433 MHz or
2.4 GHz radio. Since Arduinos are cheaper than normal Raspberry Pis, they can either serve as
extensions for the GPIOs or as an outdoor station for certain sensors whose data is fransmitted
wirelessly. As there are more projects for the Arduino than for the Raspberry Pi, you can also
implement and run those projects on the Raspberry Pi (via the Arduino detour).

ESP8266 NodeMCU:

The ESP8266 NodeMCU is a microcontroller that has a built-in Wifi module. Because of this and by
ifs very low price, it is clearly more attractive than an Arduino. The programming takes place via
the serial port can be done either via the Arduino IDE or other programs (LUA). If one has
distributed a weather station or other loT devices that are on the same WLAN network, you can
send their data to a Raspberry Pi *“mother station” via wifi. The ESP8266 is available in different
versions, although the most favorable variant (ESP-01) has only two GPIO pins. Other models like
the ESP-12 offer a lot more pins for a small extra charge.

Keypad/Numpad:

A numeric input field is required for vault or code lock projects. For this there are own modules,
which look like a numpad on the PC keyboard. These modules are available in different sizes (3x4,
4x4, etc.) and can be read directly at the Raspberry Pi. By entering certain numerical codes /
combinations, you can execute secret actions.

Magnet Valve:

A solenoid valve is suitable for interrupting the flow of liquids or gases. A kind of "opener" can be
built between two pipes or hoses. Ideally, magnetic valves are used, which are operated at 12
volts. All you need is an external power supply and a relay on the Raspberry Pi, which switches the
solenoid.

You can use those valves e.g. in the outdoor area (keyword: automatic irrigation) or in smaller
projects such as intelligent coffee makers, efc.

Water Flow Meter:

With the aid of water flow meters (Hall effect sensors), the amount of water flowing through the
tube per minute / second can be determined at the Raspberry Pi. There are different sensors with
a higher accuracy or a higher flow rate and maximum water pressure. These measuring aids are
particularly interesting in the outdoor and garden areas. For example, they can measure rainfall
during a thunderstorm (drainage channel) or check the irrigation of plants.

Port Expander:

The MCP 23017 device is an IO port expander. Because the Pi has only a limited number of GPIOs,
these can easily run out for larger projects or multiple connected modules. A port expander is
confrolled by 12C and extends the number of 10 pins. You have an additional 16 pins per port
expander, which you can declare as input or output. You can also connect and control multiple
port expanders at the same time.

Weighing Sensor + Load Cell:

Using the HX711 sensor, the Raspberry Pi can also weigh items. This requires a LoadCell (US* | UK*),
which must be connected and calibrated once. The accuracy and maximum weight to be
measured will vary depending on the model.

Ethernet Module:

If you have a Raspberry Pi Zero, you probably know the problem: Because there is only one (micro)
~ USB port, an Internet connection is only possible by means of Wi-Fi, because — unlike the Raspberry
Pi 3 — it does not have an integrated Wi-Fi adapter. If you would like to use another USB device, you
need a USB hub. This is where the ENC28J60 module comes in: it is connected to the GPIOs and

allows a wired Ethernet connection. This means you do not need an external Wi-Fi stick or USB hub.

Raspberry Pi Camera Module:

Cameras are used in many Raspberry Pi projects. In this case, common-or-garden USB webcams
can be used, but their quality is often not very good and they occupy a USB port. A better
alternative is the official camera module of the Raspberry Pi Foundation, which can be directly
connected to the CSI port. The module is available in two versions: With (green) and without
(black) infrared filter. The lack of an infrared filter allows a higher light sensitivity, which results in
betterimages at dusk / night.

Robot Arm:

Multiple servomotors allow you to control a multi-axis robot arm with the Raspberry Pi. There are
different versions, of which the most familiar is the one with 6 engines. Each individual servo can be
individually conftrolled, resulting in a high degree of accuracy. Besides the servomotors, a driver
board like the PCA%685 is very useful.

Photo Resistors:

In addition to conventional resistors and potentiometers, there are also photoresistors. These have
a light-sensitive surface and a different resistance value, depending on the light intensity. They can
be used, for example, to detect day / night or to build light barriers.

WS2801 LED Strips:

WS2801 LED strips contain many controllable RGB LEDs, which can be addressed
individually. Depending on the model, there are variants with 30/60/144 LEDs per
metre. These LED strips are ideal for the implementation of Ambilight projects. In
contrast fo the cheaper WS2812B models (which have only one data line), the
WS2801B RGB LED strips can be addressed directly from the Raspberry Pi, which
means that no additional Arduino is required for intermediate storage.

WS 2812 RGB LED Strip

The WS2812 LED strips offer the advantage of a better price / performance ratio. However, either
an Arduino must be used as an infermediate segment, or the onboard sound is deactivated,
whereby this strip is also directly accessible. However, since the Raspberry Pi does not send real-
fime signals and the frequency is not so high, this strip is not suitable for all projects. The WS2812
nevertheless offers some advantages

Exercises

Site: DTAM Online Training Platform Printed by: loanna Matouli
Course: Advanced sensors Date: Friday, 8 December 2023, 4:36 PM
Book: Exercises

Description

Table of contents

1. Exercises

1.1. Reading Out RFID RC522 Tags (NFC)

1.2. Control a HD44780 LCD display via 12C

1.3. Using a distance sensor (ultrasonic sensor HC-SR04)sensor

1. Exercises

In the following chapters you can practice your skills, with three exercises about:

e Reading out RFID RC522 Tags (NFC);
e Confrol a HD44780 LCD display via 12C;
¢ Using a distance sensor (ultrasonic sensor HC-SR04)

1.1. Reading Out RFID RC522 Tags (NFC)

In the module “introduction”, the basics of the Python programming language are discussed. If you are not confident with the
basic syntax, please review the Python chapter in the Introduction again. This exercise uses Python and a Raspberry Pl and a RFID
module (RC522).

RFID is a technology whereby data is transmitted without touch, which is used in chip cards. Access cards can be read out with a
Raspberry Pi RFID module (RC522) and thus e.g. access to doors or locks can be given. Current smartphones have similar ones.

In this tutorial you will learn how to read RFID tags with the RC522 and the Raspberry Pi and also write chip cards. The code
presented can also be used for other projects (door opener, access control). Near Field Communications (NFC) is a related
technology, the differences of which can be found here. Both RFID and NFC transmit on a frequency of 13.56 MHz, which is why the
modules are compatible with each other.

Hardware Parts to be used::

¢ Raspberry Pi 4* (also works with all previous versions)

Mifare RC522 RFID Module* (incl. KeyCard)
¢ Female - Female Jumper Cables

¢ Soldering Utensils*

If you want to use the card reader as an entrance control, etc., it makes sense to give every user a card. You can also buy these
chip cards in smaller and larger quantities* for small money and then individually write RC522 in on each card (instructions below)

Wiring

Depending on the hardware that you are using, the pin strip of the RFID module must be soldered first.

The wiring between the RFID module and the Raspberry is as follows:

RF522 Module Raspberry Pi
SDA Pin 24 / GPIO8 (CEOQ)

SCK Pin 23 / GPIO11 (SCKL)

MOSI Pin 19 / GPIO10 (MOSI)

MISO Pin 21 / GPIO9 (MISO)
IRQ —

GND Piné (GND)

RST Pin22 / GPIO25

3.3V Pin 1 (3V3)
Schemadtics:

fritzing

Activating SPI and Software Installation

In order to use the RFID RC522 Shield, we need the SPI bus. So that the Kernel is loaded at startup, we edit the config file:
sudo nano /boot/config.txt

The following content is added to the end of the file:

device_ifree_param=spi=on

dtoverlay=spi-bcm2708

You save and exit with CTRL + O, CTRL + X. Then we activate SPI:

sudo raspi-config

Activate under “Advanced Options”> “SPI” and confirm the restart (alternatively usesudo reboot now).

Then you can use dmesg | grep spi to checked whether the module has been loaded. The output should look like this:
pi@raspberrypi:~ § dmesg | grep spi

[10.784368] bcm2708_spi 20204000.spi: master is unqueuved, this is deprecated

[10.813403] bcm2708_spi 20204000.spi: SPI Controller at 0x20204000 (irq 80)

Now the packages have to be installed so that we can access the SPI bus and load a corresponding library from GitHub.

sudo apt-get install git python-dev --yes
Firstly we install the Python SPI module

git clone https://github.com/Ithiery/SPI-Py.git
cd SPI-Py

sudo python setup.py install

cd..

and then the Raspberry Pi RFID RC522 library:

git clone https://github.com/mxgxw/MFRC522-python.git && cd MFRC522-python

Testing the Raspberry Pi RFID Reader/Writer

In addition to the RC522 module, a white card and an NFC-compatible key fob are usually supplied. These parts can be used as
authentication because they are writable and readable. An NFC-enabled (Android/iOS) smartphone could also be used (which
most newer cell phones are).

To run the first test of the card/key fob, we run the script:

sudo python Read.py

As soon as the chip card is held to it and recognized, you will see an output like this:
pi@raspberrypi:~/MFRC522-python $ sudo python Read.py

Welcome to the MFRC522 data read example

Press Ctrl-C to stop.

Card detected

Card read UID: 69,245,238,117

Size: 8

Sector81[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0]

In order to change the stored data (numbers) on the chip, we edit the “Write.py” file (sudo nano Write.py). To do this, edit the code
from line 55 as follows (you can freely choose the 16 numbers from data between 0 and 255. | represented a word with ASCII
characters)

Variable for the data to write

data=[114,97, 115, 112,98, 101, 114, 114, 121, 45, 116, 117, 116, 111, 114, 0]

Fill the data with OxFF
#for x in range(0,16):

data.append(0xFF)

print "Sector 8 looked like this:"
Read block 8
MIFAREReader.MFRC522_Read(8)

print "\n"

#print "Sector 8 will now be filled with OxFF:"
Write the data
MIFAREReader. MFRC522_Write(8, data)

#print "\n"

print "It now looks like this:"
Check to see if it was written
MIFAREReader. MFRC522_Read(8)

print "\n"

mi

data =[]
Fill the data with 0x00
for x in range(0,16):

data.append(0x00)

print "Now we fill it with 0x00:"
MIFAREReader. MFRC522_Write(8, data)

print "\n"

print "It is now empty:"

Check to see if it was written

MIFAREReader. MFRC522_Read(8)

print "\n"

min

Using NFC/RFID reader in Raspberry Pi projects (door lock, etc.)

The two Python files “Read.py” and “Write.py” contain some sample code for reading and writing a chip which can be used in
other projects. The most important file is “MFRC522.py”, which can be copied into another project.

The following excerpt can be used in other projects, e.g. as a check of a code lock or door lock. | use one authentication level
(you could also set several) with a certain initial code. The last digits provide information about the holder of the card (if that data is
stored somewhere). You could only identify the user by the UID, but | assume that several cards can belong to one user. If you
don't like this solution, you can, of course, change it.

You have to make a small change in the “MFRC522.py” file so that the MIFAREReader.MFRC522_Read function has a return value:

def MFRC522_Read(self, blockAddr):
recvData =[]
recvData.append(self.PICC_READ)
recvData.append(blockAddr)
pOut = self.CalulateCRC (recvData)
recvData.append(pOut[0])
recvData.append(pOut[1])

(status, backData, backlLen) = self. MFRC522_ToCard(self.PCD_TRANSCEIVE,
recvData)

if not(status == self.MI_OK):
print "Error while reading!"
i=0
#if len(backData) == 16:
print "Sector "+str(blockAddr)+" "+str(backData)

return backData

The sample code then looked like this (the previous changes are important, otherwise no comparison can take place):

#l/usr/bin/env python

-*- coding: utf8 -*-

import RPi.GPIO as GPIO

import MFRC522

def sample_func(sample_var):
Beispiel Funktion
Skript starten, Daten loggen, etc.

print('Test Funktion wurde aufgerufen")

MIFAREReader = MFRC522.MFRC522()

authcode =[114, 97, 115, 112,98, 101, 114, 114, 121] # die ersten 9 Ziffern sind der
Authentifizierungscode

try:
while True:
Scan for cards

(status, TagType) = MIFAREReader.MFRC522_Request(MIFAREReader.PICC_REQIDL)

#If a card is found
if status == MIFAREReader.MI_OK:
Get the UID of the card
(status,uid) = MIFAREReader.MFRC522_Anticoll()
This is the default key for authentication
key = [OxFF,OxFF,0xFF,0xFF,OxFF,OxFF]
Select the scanned fag
MIFAREReader. MFRC522_SelectTag(uid)
Authenticate

status = MIFAREReader. MFRC522_Auth(MIFAREReader.PICC_AUTHENTIA, 8, key,
vid)

Check if authenticated

if status == MIFAREReader.MI_OK:

Read block 8

data = MIFAREReader. MFRC522_Read(8)

if data[:9] == authcode:
sample_func(data)

#elif ...

except Keyboardinterrupt:
print("Abbruch")

GPIO.cleanup()

1.2. Control a HD44780 LCD display via 12C

LCD character displays are a simple and a cost-effective way to display a text. Thanks to the HD44780 controller, the control of the
modules has become very simple. However, one must occupy many GPIOs for it. An alternative is the 12C data bus, which means

that only two GPIOs are used.

In this tutorial a 20x04 HD44780 character display is controlled using a 12C display adapter. A logic converter is used to adjusting
the voltage level for the module without damaging GPIOs.

The original version of this exercise (in German) can be found at
https://tutorials-raspberrypi.de/hd44780-lcd-display-per-i2c-mit-dem-raspberry-pi-anstevern/

Source codes are available at: hitps://github.com/CaptainStouf/raspberry lcd4x20 12C.

Accessories
In order to access an HD47780 display via I?C, | have used the following accessories:
e 20%04 or 16x02 Character HD44780 Display

¢ 12C Display Adapter

12C Logic Level Converter
¢ Breadboard

¢ Jumper wire

Setup

]

Tutorials— i
Rasrberr4Fi.de

Raspberry Pi GPIOs can not get more than 3.3V

HD44728 I2C Tutorial
—

voltage, but there are some modules (like this display), which send and want to receive 5V signals. For this, a Logic Level Converter
can be used, which has 2 sides. On one side those connections that are running on 3.3V are connected and on the other those
with 5V. You can recognize this at different characteristics (LV — HV), as you see in the following picture:

The pins are then connected as follows:

Raspberry Pi 3.3V Level Converter 5V Level Converter 12C LCD Adapter
3.3V (Pin 1) LV — —

5V (Pin 2) — HV VCC

GND (Pin 6) GND GND GND

GPIO2 / SDA (Pin 3) TX1 (below) — —
GPIO3 /SCL (Pin 5) TX1 (above) — —
— — TXO (below) SDA

— — TXO (above) SCL

Here is a schematic drawing:

- - 448 ea 'I.?.. - u
L X - .
5 e) X T
L yan L
TiF N .. -
LR ViCC
L et L GNE
T L L - .
— “ e = S
& L - & LN PP
- Lot L B
4 s0ss L3N BN I
ad “wwew e o
2 “wwew e wan JER
B ER) C) -
e L) L B B A aw
3 canan “sean g
LB AL A L B A)
&8 cawew “eean -
. R “esan '
P L BE N B J L L KR O &
e e e wn P
21y “ewew “ e an e
e ass ameas
. 'd - " e . L B P
b EEREE s sae T
P dd e e LR B LN P
Jalps e wa. R P
o R “eean iy
DRI e

fritzing
Any ground pin can be taken. For the sake of clarity, | chose pin 20 instead of pin 6 on the schematic diagram.

This configuration is also usable with other modules which require signals with a higher voltage than 3.3V (in this case 5V) (real time
clock, etc.).

SoftwareBefore we can start, two I12C tools are needed, which we install:

sudo apt-get install python-smbus i2c-toolsThen we will release 12C (if you have already released it from previous tutorials, you can
skip it):

sudo raspi-config

Under “Interfacing Options”> “I2C" we activate it. Now add the corresponding entries to the modules file:

sudo nano /etc/modules

These two lines are added to the end:

i2c-bcm2708

i2c-dev

Afterwards it has to be restarted, so that all changes take effect.

sudo reboot

If you have already connected the display, you can now test whether it has been detected (if you have one of the first Raspberry
Pi's [Rev.1], you have to pass 0 instead of 1):

sudo i2cdetect -y 1

The output should look like this:

pi@raspberrypi ~ $ sudo i2cdetect -y 1
0123456789abcdef

000 == == wx mm e em mm e en mm e e o

[

p]| PRI R

B0: == =n o mm e en mm e mn e e o e

B0: <= x om e mm e mm e mm e e e e am e
BO: <= == mm = wm mm wn mm wn e mn e en e e e

B0: = == = wm mm e em o e mm e mm oo e

70; -= - mm e e e e e

If you see a number other than 27, you must change this in the Icddriver.py file (ADDRESS = 0x27).
Let's start with the code:

mkdir hd44780 && cd hd44780

wget hitp://tutorials-raspberrypi.de/wp-content/uploads/scripts/hd44780 i2c.zip

unzip hd44780_i2c.zip

With the help of the two included scripts, the display can now be addressed. To do this, we open the Python console and enter the
following code:

sudo python

import lcddriver

from time import *

lcd = Icddriver.lcd()

lcd.lcd_clear()

lcd.lcd_display_string('Tutorials-", 1)

lcd.lcd_display_string(" RaspberryPi.de", 2)

T

lcd.lcd_display_string(™, 3)

lcd.lcd_display_string("HD44780 12C Tutorial", 4)

The first parameter of the lcd_display_string is for the text and the second for the row. You do not have to change all lines at once,
but you can not easily replace individual characters. For this, the entire text (with the character changed at the desired position)
would have to be retransmitted.

The contrast of my 12C adapter was at the beginning very low. If nothing should be shown, test the wheel on the back and look
obliquely on the display.

1.3. Using a distance sensor (ultrasonic sensor HC-SR04)sensor

For many (outdoor) projects a distance measurement is necessary or advantageous. These small modules are available starting at
1-2 bucks and can measure the distance up to 4-5 meters by ultrasound and are suprisingly accurate. This exercise shows the

connection and control.

Hardware

« HC-SR04 Module (US* / UK*)

Resistors: 330Q and 470Q (US* / UK*)
e Jumper wire (US* / UK¥*)

¢ Wiring

There are four pins on the ultrasound module that are connected to the Raspberry:
e VCC to Pin 2 (VCC)

« GND to Pin 6 (GND)

¢ TRIG to Pin 12 (GPIO18)

¢ connect the 330Q resistor to ECHO. On its end you connect it to Pin 18 (GPIO24) and through a 470Q resistor you connect it also
to Piné (GND).

We do this because the GPIO pins only tolerate maximal 3.3V. The connection to GND is to have a obvious signal on GPIO24. If no
pulse is sent, the signal is 0 (through the connection with GND), else it is 1. If there would be no connection to GND, the input would
be undefined if no signal is sent (randomly 0 or 1), so ambiguous.

Here is the structure as a circvit diagram:

S

s

Raspberry Pi
Model B (R2)

fritzing

Script for controlling

First of all, the Python GPIO library should be installed
To use the module, we create a new script

sudo nano ultrasonic_distance.py

with the following content:

#Libraries
import RPi.GPIO as GPIO

import time

#GPIO Mode (BOARD / BCM)

GPIO.setmode(GPIO.BCM)

#set GPIO Pins
GPIO_TRIGGER = 18

GPIO_ECHO =24

#set GPIO direction (IN / OUT)
GPIO.setup(GPIO_TRIGGER, GPIO.OUT)

GPIO.setup(GPIO_ECHO, GPIO.IN)

def distance():
set Trigger to HIGH

GPIO.output(GPIO_TRIGGER, True)

set Trigger after 0.01ms to LOW
time.sleep(0.00001)

GPIO.output(GPIO_TRIGGER, False)

StartTime = time.time()

StopTime = time.time()

save StartTime
while GPIO.input(GPIO_ECHO) == 0:

StartTime = time.time()

save time of arrival
while GPIO.input(GPIO_ECHO) == 1:

StopTime = time.time()

time difference between start and arrival
TimeElapsed = StopTime - StartTime

multiply with the sonic speed (34300 cm/s)
and divide by 2, because there and back

distance = (TimeElapsed * 34300) / 2

return distance
if _name__=='_main__"
try:
while True:
dist = distance()
print ("Measured Distance = %.1f cm" % dist)

time.sleep(1)

Reset by pressing CTRL + C
except KeyboardInterrupt:
print("Measurement stopped by User")

GPIO.cleanup()

After that we run:
sudo python ultrasonic_distance.py
So every second, the distance will be measured until the script is cancelled by pressing CTRL + C.

That's it. You can use it many fields, but who still want to measure larger distances would have to rely on laser measuring devices,

which, however, are much more expensive.

Using a device to work with sensors

Site: DTAM Online Training Platform Printed by: loanna Matouli
Course: Advanced sensors Date: Friday, 8 December 2023, 4:36 PM
Book: Using a device to work with sensors

Table of contents

1. Which device is suitable for prototyping?
2. Arduino Uno R3

3. Raspberry Pl 4 and Raspberry 3B+

1. Which device is suitable for prototyping?

Many different devices can be used to measure something (reading sensors), to send commands (actuators) and to make
decisions on what to do (for example: if the temperature in this room drops below 20 degrees, start the heater for 15 minutes).

When new solutions must be created, often a prototype is created first. Prototype devices should be easy to use, easy to extend
and change, and have good connectivity.

Common examples of prototyping devices are: Raspberry Pi and Arduino. Besides being an ideal prototyping device, they are
used because they are cheap, easy to acquire and portable.

When a solution is mature enough to use in production, other demands are important: device operation must be stable for many
years, the device should be predictable and shielded from moisture, falling damage and touching by people. Although Raspberry
Pi devices can be used in production, often PLC devices are used.

Reading fip: comparative report for Arduino vs PLC in an industrial solution by someone using both for the first fime:
https://www.controldesign.com/control/plcs-pacs/article/11316877/plc-vs-arduino-for-industrial-control

Raspberry Pi:

e costs about 50 euros;

¢ has built-in connection options such as network communication, storage, display, audio, USB;
¢ reads and writes digital signals, but cannot read and write analogue signals;

e uses more energy than an Arduino;

¢ many programming languages can be used.

Arduino:
e costs about 10 euros;

¢ does not have built-in connection options (network communication, storage, audio), although some can be added by using
optional modules;

¢ reads and writes both digital and analogue signals;
e uses C as programming language;

e uses less energy than a Raspberry Pi.

PLC:
¢ reliable and can be used in "hostile" environments (fluids, gas);
e costs about 100-1,000 euros;

e 2 textual programming languages: Structured Text (ST; similar to Pascal) and Instruction List (IL); as well as 3 graphical languages:
Ladder Diagram, Function Block Diagram (FBD) and Sequential Function Chart (SFC). Instruction List (IL) was deprecated in the
third edition of the standard.

2. Arduino Uno R3

[2Arduino Uno Rev3 (see: http://arduino.cc for more details)

Figure: Arduino Uno

The Arduino is a microcontroller platform, available in many different form factors and sizes, mounted on a PCB that plugs easily
info most computers' USB ports. It allows the user to program the onboard Atmega chip to do various things via a C-like
programming language in programs called sketches.

The Arduino is not as powerful as the Pi when it comes to computing power, but it is also completely different, as it is a
microcontroller, not a computer. The two machines do complement each other well. In this module we will focus on the Raspberry
Pi as a computer to develop different kind of solutions.

The big difference between the two is that the Raspberry Pi has an operating system, like a Windows or Apple computer, and can
be used like that: you can add a mouse, a keyboard and a monitor and even a printer to it. It can do a lot of things at the same
fime.

An Arduino is much simpler. You can light up LEDs, read values from all kinds of sensors and you can program it to do all kinds of
actions with these sensors, but it has no operating system. An Arduino can only do one thing after another. You must tell (program)
it what to do next.

3. Raspberry Pl 4 and Raspberry 3B+

QAfbeelding met tekst, elektronica, circuit Automatisch gegenereerde beschrijving
Figure: Raspberry Pl 4 (left) and Pl 3B (right)

The Raspberry Pi Foundation released an updated version of the Pi (version 4) as the successor to the 3 B+. This newer version offers
a few upgrades to the original 3B+ version, including dual-band Wi-Fi AC, a slightly faster CPU (4x1.5GHz), USB 3.0 and power-over-
Ethernet (PoE) capabilities. As this version is still very new, its form factor is almost identical to the original version 3. The size of the Pi
has not changed over the years; the Pi 3 has the same dimensions as the Pi 1: 85.6mm x 56mm x 21mm. The Pi Zero and Zero W
(smaller editions of the Raspberry Pi) are a bit smaller: 30mm x 65mm x 3.5mm (not having USB and Ethernet ports makes a huge
difference in thickness). The newest Piis a bit heavier—46 grams versus the original's 31 grams.

GPIO

As you can see in Figure 1, there is a lot packed onto the board's small space. Running along the top is one of the biggest
improvements from the Pi's early version to the current models: the increase from 26 to 40 GPIO (General Purpose Input/Output)
pins. These pins allow you to connect the Pito any number of physical extensions, from LEDs and servomotors to motor controllers
and extension boards (often referred to as "hats"). With a normal desktop or laptop, interfacing with physical devices like those is
virtually impossible, as the serial port has all but disappeared on newer devices, and not everybody can write low-level device
drivers for the USB port. The Pi, however, comes with pre-installed libraries that allow you to access the pins using Python, C, or C++,
and there are additional libraries (e.g., PIGPIO and ServoBlaster) available if you do not want to use the pre-installed versions. In this
module we will focus on Python as a programming language for the Raspberry Pi and PIGPIO as a module to connect sensors to
the board.

QAfbeelding met tekst, elektronica, schermafbeelding Automatisch gegenereerde beschrijving
Figure: GPIO Pin layout Raspberry Pi 4
USB & Ethernet

The next thing we come to along the outside edge is the two pairs of USB ports and the Ethernet port. These are both connected
to the hip just to the left of the USB port, which supplies USB3.0 on the Pi 4 and USB2.0 on the 3B+,10/100/1000 Ethernet connectivity
on the Pi 4 and 10/100 Ethernet connectivity on the Pi 3B+. As with all other Pis, the chip acts as a USB-to-Ethernet adapter, which is
what allows the onboard Ethernet to work.

Audio Jack

The 3.5mm audio jack on the board can be used with any standard pair of headphones. HDMI sound is delivered, if available, via
the HDMI connectors.

HDMI

Next to the camera board connector is the Pi's HDMI (High-Definition Multimedia Interface) port. Many Pi aficionados argue that
this is where the Pi distinguishes itself from the early stages, as it has always been able to display high-definition graphics. The
newest version of the Pi has a 500MHz Broadcom VideoCore VI GPU on board, enabling it to produce 4K HD video at up to 60fps. It
can support Blu-ray quality playback and supports OpenGL and OpenVG libraries on the chip, and while it does not have H.265
decoding hardware, the GPU runs fast enough to be able to decode H.265 in software. The Pi 4 supports up to two displays via two
micro-HDMI connectors.

Power

Continuing clockwise, we come to the USB-C power input port. Like previous versions of the Pi, you can probably use a standard
mobile phone charger to power your Pi, but make sure it can source at least 2A. The Pi 3 may not use that much current on its own,
but it definitely can if four devices are plugged into the four USB ports.

System on a Chip

The most important piece on the whole Piis the large black chip in the middle, also referred to as an SoC, or System on a Chip. The
Pi's chip is a Broadcom BCM2711, with a 1.5GHz ARM Cortex A72 quad-core cluster.

SD Card

Finally, on the bottom of the board, is the microSD card slot. One of the Pi's greatest space-saving features is its lack of a real hard
drive. The SD card acts like a solid-state drive (SSD). This form factor has varied over the course of the Pi's versions; the current
version takes microSD cards only and is not spring-loaded. You will need to use at least a 4GB card to get a minimum install of
Raspbian (the Pi's preferred OS) to work on the Pi, and 8GB or higher is recommended.

Programming loT with Python on a Raspberry Pi

Site: DTAM Online Training Platform Printed by: loanna Matouli
Course: Advanced sensors Date: Friday, 8 December 2023, 4:38 PM
Book: Programming IoT with Python on a Raspberry Pi

Table of contents

1. Using Python as loT programming language

2. Arguments for using Python for loT

3. Book: "The Coder’'s Apprentice" by Pieter Spronck

4. Project: physical computing by Raspberry Pi Foundation
5. Exercise: operating a "traffic light" from Python code

6. Exercise: operating a "raffic light" from Python code (answer)

1. Using Python as loT programming language

The DTAM "Introduction” module includes a chapter on "Python & Database fundamentals'. Init, Python is introduced as a useful,
multipurpose programming language, suitable for working with big data sets, machine learning, web development, and many
other purposes. We assume you have learned the programming basics in Python.

In this module, we will extend your knowledge and teach you the skills needed to develop loT solutions with Python running on a
Raspberry Pi. It is very easy to develop Internet of Things (loT) applications with Python. This chapter will explain why Python is a
good choice for loT and will infroduce you to using Python as an loT programming language.

As explained in the previous chapter, the Raspberry is an easy-to-use device, capable of running Python and connecting to a
wide range of sensors and to many other devices over the Internet.

2. Arguments for using Python for loT

Why use Python on the Internet of Things? A Python programmers tutorial states: "For many developers, Python is considered as the
language of preference in the market. It is simple to learn, has clean syntax, and has a large online community supporting it.
Python becomes a great choice when it comes to loT." (https://www.javatpoint.com/internet-of-things-with-python).

In this 4-minute video: "

" (4:06, by "Programming with Mosh", 23 Oct. 2018), several other arguments are given:
- fastest growing programming language;

- easy to learn, also for people who are not programmers;

- lots of libraries (very useful because new hardware sensors are developed quickly)

In the world of scripting languages, Python is a relative newcomer to the scene, though it is not as new as many people believe. It
was developed in the late 1980s, perhaps 15 years after the conception of Unix. It was implemented in December 1989 by ifs
principal author, Guido Van Rossum. He has remained active in Python's development and progress, and his conftributions to the
language have been rewarded by the Python community, which gifted him the title Benevolent Dictator for Life (BDFL). Python's

philosophy has always been to make code readable and accessible. That philosophy is summed up in Python's "PEP 20 (The Zen Of

o Beautiful is better than ugly.

o Explicit is better than implicit.

¢ Simple is better than complex.

o Complex is better than complicated.

e Flatis better than nested.

e Sparse is better than dense.

¢ Readability counts.

e Special cases aren't special enough to break the rules.

¢ Although practicality beats purity.

e Errors should never pass silenfly.

o Unless explicitly silenced.

¢ In the face of ambiguity, refuse the femptation fo guess.

¢ There should be one -- and preferably only one --obvious way to do it.
e Although that way may not be obvious at first unless you're Dutch.
¢ Now is better than never.

¢ Although never is often befter than *right* now.

¢ |f the implementation is hard to explain, it's a bad idea.
o If the implementation is easy to explain, it may be a good idea.

* Namespaces are one honking great idea -- let's do more of those!

In addition to these commandments, Python has a "oatteries included" mindset, which means that whatever strange task you
need to do in Python, chances are that a module already exists to do just that, so you don't have to reinvent the wheel.

3. Book: "The Coder’s Apprentice" by Pieter Spronck

In this course we will reference parts of the freely available book "The Coder's Apprentice" by Pieter Spronck. "The Coder's
Apprentice" is a course book, written by Pieter Spronck, aimed at teaching Python 3 to students who are completely new to
programming. Contrary to many of the other books that teach Python programming, this book assumes no previous knowledge of
programming on the part of the students and contains numerous exercises that allow students to train their programming skills

The Coder’s Apprentice

Learning Programming with Python 3

Pieter Spronck

(source: https://www.spronck.net/pythonbook/index.xhtmil).
The English and Dutch translations of this book can be downloaded from https://www.spronck.net/pythonbook/index.xhtmil.

The last available versionis 1.0.16 (2017), so the book is a number of years old.
Yet the contents are still valid and very useful.

4. Project: physical computing by Raspberry Pi Foundation

As a way of helping you to get started using a Raspberry Pl with Python for physical computing, the Raspberry Pi Foundation has
released a number of projects to discover how to use Python code to read sensor data from GPIO pins and write commands to
actuators, displays and LEDs. In this module we use some parts from this project. The full project is available in English free of charge
and can be found at: https://projects.raspberrypi.org/en/projects/physical-computing. You can use the project using this link and
follow the steps. Or you can use the same steps in this chapter.

The Raspberry comes pre-installed with Python 3, many Python modules and an editor. Depending on the version of Raspbian, the
editor is either "mu" or "Thonny".

It is possible, of course, to write code on another device (like a laptop) and then transfer your code file to the Raspberry for
execution.

As well as a Raspberry Pi with an SD card and the usual peripherals, you will also need:

Male-to- Female-to-

1x Solderless) . Male-to-male
female jumper female jumper
breadboard jumper leads
leads leads
It i Passi
1x Tactile Ul .rasonlc ! assive
3x LEDs distance infrared
button A
sensor motion sensor
a \ e |
Light
- 3x330Q .
Dependent 5V Motor B 470Q Resistor
s Resistor
Resistor
N
Y //// < '/ N
v N TN
1x 1uF Capacit B Motor Controller

Battery Pack 1x MCP3008 ADC Potentiometer

Figure 9: List of required components

N and off

- el

Python code for switching an LED o

Figure 10: Raspberry Pi, GPIO breakout board, breadboard, LEDs

One powerful feature of the Raspberry Piis the row of GPIO pins along the top edge of the board. GPIO stands for General-
Purpose Input/Output. These pins are physical interfaces between the Raspberry Pi and the outside world. At the simplest level, you
can think of them as switches that you can furn on or off (input) or that the Pi can turn on or off (output).

The GPIO pins allow the Raspberry Pi to control and monitor the outside world by being connected to electronic circuits. The Piis
able to control LEDs, furning them on or off, run motors, and many other things. It can also detect whether a switch has been
pressed, as well as the temperature and light. We refer to this as physical computing.

000 00 ©0000 © 000
000 0009000 000000

Raspberry Pi A+ / B+ and Raspberry Pi 2 pin bers

(ero @Groune (Dazv @sv [nzm .,

Figure 11: Raspberry Pl GPIO pin layout

There are 40 pins on the Raspberry Pi (26 pins on early models), which provide various functions. LEDs are delicate little things. If you
put too much current through them, they will pop (sometimes quite spectacularly). To limit the current going through the LED, you
should always use a resistor in series with if.

2

Figure 12: LED, resistor, wires

¢ Try connecting the long leg of an LED fo the Pi's 3V3 and the short leg to a GND pin. The resistor can be anything over about
50Q.

The LED should light up. It will always be on, because it is connected to a 3V3 pin, which is itself always on.

¢ Now fry moving it from 3V3 to GPIO pin 17:

The LED should turn off, but now it is on a GPIO pin and can therefore be controlled by code.

GPIO Zero is a new Python library (module) that provides a simple interface to everyday GPIO components. It comes installed by
default in Raspbian. See "The Coder's Apprentice", chapter 5.3 "modules” to read more about importing modules.

e Connect your Raspberry to a power supply, monitor, keyboard and mouse

Wait until the Raspberry is fully booted (you will see a desktop, with the Raspberry icon at the top left)

¢ Open the Raspberry menu at the top left, choose "Programming” and then "Thonny Python IDE"

The Thonny window will open with a new untitled file

Type the following lines into Thonny:

from gpiozero import LED
led =LED(17)
led.on()

¢ Save the file as “led.py”

¢ Click the "Run" button (green arrow) and watch the LED light up.

Python code for flashing an LED

You can make the LED flash with the help of the fime library and a little loop.
¢ Create a new file by clicking New.
¢ Save the new file by clicking Save. Save the file as gpio_led.py.
e Enfer the following code to get started (note the TAB character before lines 5-8):
from gpiozero import LED
from time import sleep
led = LED(17)
while True:
led.on()
sleep(1)
led.off()

sleep(1)

¢ Save the file and run the code with by clicking Run.
The LED should be flashing on and off. Click Stop to exit the program.

* Now fry to connect your wire to another GPIO pin and adjust the code to use the new PIN

Python code for using buttons to get input

Now that you are able to control an output component (an LED), let's connect and control an input component: a button.

Connect a button to another GND pin and GPIO pin 2, like this:

w

- abcde fghij *+ =

— THENEN LL L LR --
< EEEEN
L Ll K

~
u] EmEEns | NN
Hl T E -
Emmmms | "W

TTITE
TTILE
EENEEES
T
EEEEED
STTILE ETrrrs
it e ETrs J
——

¢ Create a new file by clicking New.

* Save the new file by clicking Save. Save the file as gpio_button.py.

This time you will need the Button class and tell it that the button is on pin 2. Write the following code in your new file:
from gpiozero import Button

button = Button(2)

Now you can get your program to do something when the button is pushed. Add these lines:
button.wait_for_press()

print('You pushed me')

e Save (gpio_bufton.py) and run the code.

e Press the button and your text will appear.

If your code does not work, double-check if you connected the button wires to the correct GPIO pins. Also, check if Python
generated an error message.

Python code for making a light switch

With a switch, a single press and release on the button would turn the LED on, and another press and release would turn it off
again.

* Modify your code so that it looks like this:

from gpiozero import LED, Button

from time import sleep

led = LED(17)

button = Button(2)

while True:
button.wait_for_press()
led.toggle()

sleep(0.5)

led.toggle() switches the state of the LED from on to off, or off o on. Since this happens in a loop, the LED will turn on and off each
fime the button is pressed.

It would be great if you could make it so that the LED switch switches on only when the button is being held down. With GPIO Zero,
that is easy. There are two methods of the Button class, called when_pressed and when_released. These do not block the flow of
the program, so if they are placed in a loop, the program will continue to cycle indefinitely.

* Modify your code to look like this:
from gpiozero import LED, Button

from signal import pause

led = LED(17)

button = Button(2)

button.when_pressed = led.on

button.when_released = led.off

pause()

¢ Save and run the program. Now when the button is pressed, the LED will light up. It will turn off again when the button is
released.

Python code for using a buzzer

There are two main types of buzzer: active and passive.

A passive buzzer emits a fone when a voltage is applied across it. It also requires a specific signal to generate a variety of fones. As
active buzzers are a lot simpler to use, these are covered here.

Connecting a buzzer

An active buzzer can be connected just like an LED, but as they are a little more robust, you do not need a resistor to protect
them.

Set up the circuit as shown below:

Add Buzzer to the from gpiozero import... line:

from gpiozero import Buzzer

from time import sleep
Add a line below your creation of button and lights to add a Buzzer object
buzzer = Buzzer(17)

In GPIO Zero, a Buzzer works exactly like an LED, so try adding a buzzer.on() and buzzer.off() into your loop:

while True:
buzzer.on()
sleep(1)
buzzer.off()

sleep(1)

A Buzzer has a beep() method that works like an LED's blink. Try it:

while True:

buzzer.beep()

Python code for using a light-dependent resistor

Analogue inputs

In the world of electrical engineering, there are two types of input and output (I/O): analogue and digital. Digital I/O is fairly easy
to understand; it is either on or off, 1 or 0.

When talking about voltages and the Raspberry Pi, any input that is approximately below 1.8V is considered off and anything
above 1.8V is considered on. For output, OV is off and 3.3V is on.

Analogue I/O is a little trickier. With an analogue input, we can have a range of voltages from OV up to 3.3V, and the Raspberry Pi
is unable to detect exactly what that voltage is.

R

Analogue inputs could be given a range of Digital inputs are either on or off. Any voltage
voltages, anywhere from OV up to 3.3V. above 1.8V is considered on, and below that
is considered off.

Figure 13: Analogue (left) and digital (right) signals

How, then, can we use a Raspberry Pi to determine the value of an analogue input, if it can only tell when the voltage to a GPIO
pin goes above 1.8V¢

Using a capacitor for analogue inputs

Capacitors are electrical components that store charge.

When current is fed info a capacitor, it will begin to store charge. The voltage across the capacitor will start off low, and increase
as the charge builds up.

By putting a resistor in series with the capacitor, you can slow the speed at which it charges. With a high resistance, the capacitor
will charge slowly, whereas a low resistance will let it charge quickly.

If you time how long it takes the capacitor's voltage to get over 1.8V (or be on), you can work out the resistance of the
component in series with it.

Many, but not all, capacitors are polarised, which means they have a positive and a negative leg. In this case, the negative leg is
shorter and should be marked with a - symbol.

Light-dependent resistors

An LDR (sometimes called a photocell) is a special type of resistor.

When light hits the LDR, its resistance is very low, but when it is in the dark its resistance is very high.
By placing a capacitor in series with an LDR, the capacitor will charge at different speeds, depending on whether it is light or dark.

Creating a light-sensing circuit

¢ Place an LDR into your breadboard, as shown below:

* Now place a capacitor in series with the LDR. As the capacitor is a polar component, you must make sure the positive, long leg
is on the same track as the LDR leg.

Coding a light sensor

Luckily, most of the complicated code you would have to write to detect the light levels received by the LDR has been abstracted
away by the gpiozero library. This library will handle the timing of the capacitor's charging and discharging for you.

Use the following code to set up the light sensor:

from gpiozero import LightSensor, Buzzer

Idr = LightSensor(4) # alter if using a different pin
while True:

print(ldr.value)

Run this code, then cover the LDR with your hand and watch the value change. Try shining a strong light onto the LDR.

Python code for using a movement (PIR) sensor

Humans and other animals emit radiation all the time. This is nothing to be concerned about, as the type of radiation we emit is
infrared radiation (IR), which is pretty harmless at the levels at which it is emitted by humans. In fact, all objects at temperatures
above absolute zero (-273.15°C) emit infrared radiation.

A PIR sensor detects changes in the amount of infrared radiation it receives. When there is a significant change in the amount of
infrared radiation it detects, a pulse is friggered. This means that a PIR sensor can detect when a human (or any animal) moves in

front of it. ¢ \:"
V

Wiring a PIR sensor

The pulse emitted when a PIR detects motion needs to be amplified, and so it needs to be powered. There are three pins on the
PIR; they should be labelled Vcc, Gnd and Out. These labels are sometimes concealed beneath the Fresnel lens (the white cap),
which you can temporarily remove to see the pin labels.

1. As shown above, the Vcc pin needs to be attached to a 5V pin on the Raspberry Pi.
2. The Gnd pin on the PIR sensor can be attached to any ground pin on the Raspberry Pi.

3. Lastly, the Out pin needs to be connected to any of the GPIO pins.

Tuning a PIR

Most PIR sensors have two potentiometers on them. These can control the sensitivity of the sensors, as well as the period of time for
which the PIR will signal when motion is detected.

1. In the image above, the potentiometer on the right controls the sensitivity, and the potentiometer on the left controls the
timeout. Here, both are turned fully anfi-clockwise, meaning that the sensitivity and timeout are at their lowest.

When the timeout is turned fully anti-clockwise, the PIR will produce a signal for about 2.5 seconds whenever motion is detected. If
the potentiometer is furned fully clockwise, the output signal will last for around 250 seconds. When tuning the sensitivity, it is best to
have the fimeout set as low as possible.

You can detect moftion with the PIR using the code below:

from gpiozero import MotionSensor

pir = MotionSensor(4)

while True:
pir.wait_for_motion()
print("You moved")

pir.wait_for_no_motion()

Python code for using an ultrasonic distance sensor

In air, sound travels at a speed of 343 mefres per second. An ulfrasonic distance sensor sends out pulses of ultfrasound that are
inaudible to humans, and detects the echo that is sent back when the sound bounces off a nearby object. It then uses the speed
of sound to calculate the distance from the object.

Wiring

The circuit connects to two GPIO pins (one for echo, one for frigger), the ground pin and a 5V pin. You need to use a pair of
resistors (330Q and 470Q) as a potential divider:

c
RN

1
.

Code
To use the ulfrasonic distance sensor in Python, you need to know to which GPIO pins the echo and trigger are connected.

Use the following code to read the DistanceSensor.

from gpiozero import DistanceSensor
ultrasonic = DistanceSensor(echo=17, trigger=4)
while True:

print(ultrasonic.distance)

The value should get smaller the closer your hand is to the sensor. Press Stop to exit the loop.

Ranges

As well as being able to see the distance value, you can also get the sensor to do things when the object is in or out of a certain
range.

Use a loop to print different messages when the sensor is in range or out of range:

while True:
ultrasonic.wait_for_in_range()
print("In range")
ultrasonic.wait_for_out_of_range()

print("Out of range”)

Now wave your hand in front of the sensor; it should switch between showing the message "In range" and "Out of range" as your
hand gets closer and further away from the sensor. See if you can work out the point at which it changes.

¢ The default range threshold is 0.3m. This can be configured when the sensor is initiated:
ultrasonic = DistanceSensor(echo=17, trigger=4, threshold_distance=0.5)
Alternatively, this can be changed after the sensor is created, by setfting the threshold_distance property:
ultrasonic.threshold_distance = 0.5

¢ Try the previous loop again and observe the new range threshold.

The wait_for functions are blocking, which means they halt the program unfil they are triggered. Another way of doing something
when the sensor goes in and out of range is to use when properties, which can be used to trigger actions in the background while

other things are happening in the code.
First, you need to create a function for what you want to happen when the sensor is in range:
def hello():

print("Hello")
Then set ultrasonic.when_in_range to the name of this function:
ultrasonic.when_in_range = hello

Add another function for when the sensor goes out of range:
def bye():

print("Bye")

ultrasonic.when_out_of_range = bye
Now these triggers are set up, you will see "hello" printed when your hand is in range, and "bye" when it is out of range.

¢ You may have noticed that the sensor distance stopped at 1 metre. This is the default maximum and can also be configured on
setup:
ulfrasonic = DistanceSensor(echo=17, trigger=4, max_distance=2)
Or after setup:
ultrasonic.max_distance = 2

¢ Try different values of max_distance and threshold_distance.

Python code for analogue inputs

The Raspberry Pi's GPIO pins are digital pins, so you can only set outputs to high or low, or read inputs as high or low. However, using
an ADC chip (Analogue-to-Digital converter), you can read the value of analogue input devices such as potentiometers.

SPI

The analogue values are communicated to the Pi using the SPI protocol. While this will work in GPIO Zero out of the box, you may
get better results if you enable full SPI support.

e Open a terminal window and install the spidev package:
sudo apt-get install python3-spidev python-spidev

 Open the Raspberry Pi Configuration dialogue from the main menu and enable SPI in the Interfaces tab:

Easpberry Pi Configuration

Camera:) Enabled *) Disabled
SSH: () Enabled) Disabled
SPI:) Enabled ‘=) Disabled
12C: (I Enabled =) Disabled
Serial: @) Enabled) Disabled
1-Wire:) Enabled (=) Disabled
Remote GPIO:) Enabled (*) Disabled

Cancel | ‘ OK

¢ Click OK and rebooft the Pi.
Wiring the ADC (MCP3008)

The MCP3008 is an ADC providing eight input channels. The eight connectors on one side are connected to the Pi's GPIO pins, and
the other eight are available to connect analogue input devices to read their values.

Place the MCP3008 chip on a breadboard and carefully wire it up as shown in the following diagram. You should see a small
notfch, or dof, in one end of the chip. In the diagram, this end of the chip is aligned with column 19 on the breadboard.

- abcde

THNNEN
EEEEN

foghij *+ -
EEEEN

Alternatively, you could use the Analog_Zero board, which provides the MCP3008 chip on a handy add-on board to save you from
having to do the complicated wiring.

Add a potentfiometer

Now that the ADC is connected to the Pi, you can wire devices up to the input channels. A potentiometer is a good example of
an analogue input device: It is simply a variable resistor, and the Pi reads the voltage (from 0V to 3.3V).

A potentiometer's pins are ground, data and 3V3. This means you connect it to ground and a supply of 3V3, and read the actual
voltage from the middle pin.

¢ Place a potentiometer on the breadboard and wire one side to the ground rail, the other to the 3V3 rail and the middle pin to
the first input channel as shown:

= e de fghij * -

T mmmn] e
TR LT et
> EENEER
T EEEEE
sEEEEE
cHENEE
EEEEE

sEEEEN
sMEENEN
oEEEEN

EEEEN
EEEEN
2EEEEN
sEEEEN
EEEEN
sEEEEN
cEEEEN

sEEN

EE L)
- abocde

Code
Now your potentiometer is connected and its value can be read from Python!
e Open Mu from the main menu.

o Start by importing the MCP3008 class from the GPIO Zero library:
from gpiozero import MCP3008

o Create an object representing your analogue device:
pot = MCP3008(0)
Note that 0 represents the ADC's channel 0. There are 8 channels (0 to 7) and you are using the first one.

¢ Try toread its value:
print(pot.value)

¢ Run your code. You should see a number between 0 and 1. This represents how far the dial is turned.

Now read the value in a loop:
while True:

print(pot.value)
Try twisting the dial around to see the value change.

PWMLED

Now that you have tested that you can read values from the potentiometer, you should connect it to another GPIO device.

¢ Add an LED to your breadboard and wire it to the Pi, connecting it to GPIO pin 21:

P11

TE
E

V \j = S EmE
T

+ - abede

¢ In your Python code, start by importing the PWMLED class:
from gpiozero import PWMLED
The PWMLED class lets you control the brightness of an LED using PWM, or pulse-width modulation.

e Create a PWMLED object on pin 21:
led = PWMLED(21)

Test whether you can control the LED manually:
led.on() # the led should be Iit

led.off() # the led should go off
led.value = 0.5 # the led should be lit at half brightness

 Now connect the LED to the potentiometer:
led.source = pot.values

e Turn the dial fo change the LED brightness!

Source and values

GPIO Zero has a powerful feature: source and values. Every device has a valueproperty (the current value) and a values property
(a stream of the device's values at all times). Every output device has a source property that can be used to set what the device's
value should be.

¢ pot.value gives the potentiometer's current value (it is read only, as it is an input device)

e led.value is the LED's current value (it is read/write: you can see what it is, and you can change it)
¢ pot.valuesis a generator constantly yielding the potentiometer's current value

e led.source is a way of sefting where the LED gefs its values from

Rather than confinuously setting the value of the LED to the value of the potentiometerin a loop, you can just pair the two
devices. Therefore the line led.source = pot.values is equivalent to the following loop:

while True:

led.value = pot.value

Multiple potentiometers

e Add a second potentiometer to your breadboard and connect it to the ADC's channel 1:

¢ Now create a second MCP3008 object on channel 1:
pot2 = MCP3008(1)

¢ Make the LED blink:
led.blink()
The LED will blink continuously, one second on and one second off.

Change the on_time and off_time parameters to make it blink faster or slower:
led.blink(on_time=2, off_time=2)

led.blink(on_time=0.5, off_time=0.1)

Now use a loop to change the blink times according to the potentiometer values:
while True:

prinf(pot.value, pot2.value)

led.blink(on_time=pot.value, off_time=pot2.value, n=1, background=False)
Note that you have to make it blink once in the foreground, so that each iteration gets time to finish before it updates the blink
fimes.

¢ Rotate the dials to make it blink at different speeds!

Also try changing blink to pulse and change on_time and off_fime fo fade_in_time and fade_out_time so that it fades in and out at
different speeds, rather than just blinking on and off:
while True:

print(pot.value, pot2.value)
led.pulse(fade_in_time=pot.value, fade_out_time=pot2.value, n=1, background=False)

¢ Rotate the dials to change the effect.

Python code for using motors
Motors are great for physical computing: they allow you to turn a wheel forwards and backwards, or make something spin around.

A motor cannot be controlled directly from the Raspberry Pi's GPIO pins, because it needs a variable supply of 5 volts. This means
you need to power it separately. Motor controller add-on boards can be used to provide this functionality.

In this guide, you will confrol two motors from your Raspberry Pi using Python on the desktop. First, it is best just o learn how fo
control the motor. Then, once you have it working, you could easily use your code to drive a Raspberry Pi-powered robot by
detaching the monitor, mouse, and keyboard and building a robot around a chassis.

H bridge

A motor can be driven forwards or backwards depending on which way around current flows through it. However, it would be
awkward to have to rewire a motor every time you want to change the direction it spins. To overcome this issue, motor controller
boards include an H bridge. An H bridge uses 4 transistors fo allow digital control of which way current flows through the motor.
Most H bridges also contain flyback diodes. A flyback diode prevents the voltage spike that is generated by the motor when it is
no longer powered (but still spinning) from damaging delicate electronics.

51 S3

S2 5S4

Image credit: Wikipedia, CC BY-SA

Wiring
You will need to wire up two motors and your battery pack using the motor controller.

¢ With your Pi switched off, mount your motor controller board on the GPIO pins:

o Connect a battery pack to the power ports of the motor conftroller, connecting the positive (red) battery wire to the positive (+)
power terminal on the motor controller, and the negative (black) battery wire to the negative (-) power terminal on the motor
controller, and connect two motors:

¢ You will need to know which GPIO pins your motor controller uses. Refer to the board's documentation. This will usually be
described as Motor A and Motor B, or MAT, MA2, MB1 and MB2. Make a note of these pin numbers. If you are not sure which is
which, you can investigate this next.

Motor class
You can use the built-in Motor class to control motors.

e Import the Motor class:
from gpiozero import Motor

Now create a Motor instance using the pin numbers for each motor:
motorl = Motor(4, 14)

motor2 = Motor(17, 27)
Note: to make it easier to see which pin is which, you can use Motor(forward=4, backward=14) for future reference.

¢ Now drive one of the motors forwards using the following code:
motorl.forward()

¢ And the other backwards:
motor2.backward()

Or fry half speed:
motorl.forward(0.5)

motor2.backward(0.5)

The Motor class also allows you to reverse the motor's direction. Try using this loop:
motorl.forward()

motor2.backward()
while True:
sleep(5)

motorl.reverse()

motor2.reverse()
This will make the motors spin in opposite directions, then switch every five seconds. Press Ctrl + C to exit the loop.

Now stop the motors:
motorl.stop()

motor2.stop()

Robot class

If you had a robot with two wheels you would want to control the two motors together, rather than separately, just like you did for
the two pins of each motor. Luckily, there is also a Roboft class in GPIO Zero.

¢ Import the Robot class:
from gpiozero import Robot

* Now create a Robot instance using the pin numbers for each motor:
robot = Robot((4, 14), (17, 27))
Note: to make it easier fo see which pin is which, you can use Roboft(left=(4, 14), right=(17, 27)) for future reference.

¢ Now drive one of the motors forwards using the following code:
robot.forward()
Both motors should now be driving forwards.

e And backwards:
robot.backward()
Both motors should now be driving backwards.

Try reverse a few times:
robot.reverse()

robot.reverse()
robot.reverse()

e Ortry half speed:
robot.forward(0.5)

¢ And that's not alll What would happen if the left wheel went forwards and the right wheel went backwards? The robot would
turn right. Try it:
robot.right()

e Then try this:
robot.left()

« Now stop the robot:
robot.stop()

5. Exercise: operating a "traffic light" from Python code

Using the explanation in the previous paragraph "Python code for flashing an LED", create a traffic light with ared, a green and an
amber LED.

For this exercise you will need a breadboard, three LEDs, a button, a buzzer and the necessary jumper leads and resistors.

Create a Python script that will operate the traffic light as follows

e red (5 seconds)

yellow (2 seconds)

e green (5 seconds)

yellow (2 seconds)

e red (5 seconds)

6. Exercise: operating a "traffic light" from Python code (answer)

Wiring

To geft started, you will need to place all the components on the breadboard and connect them to the appropriate GPIO pins on
the Raspberry Pi.

First, you need to understand how each component is connected:
¢ A push button requires 1 ground pin and 1 GPIO pin
e An LED requires 1 ground pin and 1 GPIO pin, with a current limiting resistor

e A buzzerrequires 1 ground pin and 1 GPIO pin

Each component requires its own individual GPIO pin, but components can share a ground pin. We will use the breadboard to
enable this.

Place the components on the breadboard and connect them to the Raspberry Pi GPIO pins, according to the following diagram:

=)

THEEEN
ENEEN
m sEEEEN

Note that the row along the long side of the breadboard is connected to a ground pin on the Raspberry Pi, so all the components
in that row (which is used as a ground rail) are connected to ground.

Observe the following table, showing fo which GPIO pin each component is connected:

Component GPIO pin
Button 21

Red LED 25
Amber LED 8

Green LED 7

Buzzer 15

Dive into Python
¢ Create a new file by clicking New.

+ Save the new file straight away by clicking Save; name the file frafficlights.py.

¢ Enfer the following code:
from gpiozero import Button
button = Button(21)

while True:

print(button.is_pressed)

In GPIO Zero, create an object for each component used. Each component interface must be imported from the gpiozero
module, and an instance must be created on the GPIO pin humber to which it is connected.

e Save and run the code.

¢ In the shell it will be constantly printing False. When you press the button, this will switch to True, and when you release it, it will
return to False.
button.is_pressed is a property of the button object, which provides the state of the button (pressed or not) at any given time.

¢ Now return to the code window and modify your while loop to show the following:

while True:
if button.is_pressed:
print("Hello")
else:
print("Goodbye")
¢ Run the code again and you will see "Hello" printed when the button is pressed, and "Goodbye" when the button is not pressed.

Modify the loop again:
while True:

button.wait_for_press()
print("Pressed")
button.wait_for_release()
print("Released")

¢ When you run the code this time, nothing will happen until you press the button: you will then see "Pressed"; when you let go you
will see "Released". This will occur each fime the button is pressed, but rather than continuously printing one or the other, it only
does it once per press.

Add an LED
Now you can add an LED into the code and use GPIO Zero to allow the button to determine when the LED is lit.

¢ In your code, add to the from gpiozero import... line at the top to also bring in LED:
from gpiozero import Button, LED

¢ Add a line below button = Button(21) to create an instance of an LED object:
led = LED(25)

Now modify your while loop to turn the LED on when the button is pressed:
while True:

button.wait_for_press()

led.on()
button.wait_for_release()
led.off()
e Run your code and the LED will come on when you press the button. Hold the button down to keep the LED lit.

Now swap the on and off lines to reverse the logic:
while True:

led.on()
button.wait_for_press()
led.off()
button.wait_for_release()
e Run the code and you will see that the LED stays on until the button is pressed.

Now replace led.on() with led.blink():
while True:

led.blink()
button.wait_for_press|)
led.off()
button.wait_for_release()

¢ Run the code and you will see the LED blink on and off until the button is pressed, at which point it will turn off completely. When
the button is released, it will start blinking again.

¢ Try adding some parameters to blink to make it blink faster or slower:
o led.blink(2, 2) - 2 seconds on, 2 seconds off
o led.blink(0.5, 0.5) - half a second on, half a second off
o led.blink(0.1, 0.2) - one tenth of a second on, one fifth of a second off

o blink's first two (optional) parameters are on_time and off_time: they both default to 1 second.

Traffic lights
You have three LEDs: red, amber and green. Perfect for traffic lights! There is even a built-in interface for traffic lights in GPIO Zero.

¢ Amend the from gpiozero import... line to replace LED with TrafficLights:
from gpiozero import Button, TrafficLights

¢ Replace your led = LED(25) line with the following:
lights = TrafficLights(25, 8, 7)
The Trafficlights interface takes three GPIO pin numbers, one for each pin: red, amber and green (in that order).

Now amend your while loop to control the TrafficLights object:
while True:

button.wait_for_press()
lights.on()

button.wait_for_release()

lights.off()
The TrafficLights interface is very similar to that of an individual LED: you can use on, off and blink, all of which control all three lights
at once.

Try the blink example:
while True:

lights.blink()
button.wait_for_press()
lights.off()

button.wait_for_release()

Add a buzzer
Now you can add your buzzer fo make some noise.

e Add Buzzer to the from gpiozero import... line:
from gpiozero import Button, TrafficLights, Buzzer

e Add a line below your creation of button and lights to add a Buzzer object:
buzzer = Buzzer(15)

Buzzer works exactly like LED, so try adding a buzzer.on() and buzzer.off() into your loop:
while True:

lights.on()

buzzer.off()
button.wait_for_press()
lights.off()

buzzer.on()
button.wait_for_release()

Buzzer has a beep() method which works like LED's blink. Try it out:
while True:

lights.blink()
buzzer.beep()
button.wait_for_press()
lights.off()

buzzer.off()

button.wait_for_release()

Traffic light sequence

As well as confrolling the whole set of lights together, you can also control each LED individually. With traffic light LEDs, a button
and a buzzer, you can create your own traffic light sequence, complete with pedestrian crossing!

* At the top of your file, below from gpiozero import..., add a line to import the sleep function:
from fime import sleep

Modify your loop to perform an automated sequence of LEDs being lit:
while True:

lights.green.on()
sleep(1)
lights.amber.on()
sleep(1)
lights.red.on()
sleep(1)
lights.off()

Add a wait_for_press so that pressing the button initiates the sequence:
while True:

button.wait_for_press()
lights.green.on()
sleep(1)
lights.amber.on()
sleep(1)

lights.red.on()

sleep(1)

lights.off()

¢ Try some more sequences of your own.
¢ Now fry creating the full traffic lights sequence:
o Greenon
o Amberon
o Redon
o Red and amber on
o Greenon
* Be sure fo turn the correct lights on and off at the right time, and make sure you use sleep to time the sequence perfectly.

¢ Try adding the button for a pedestrian crossing. The button should move the lights to red (not immediately), and give the
pedestrians time to cross before moving back to green until the button is pressed again.

+ Now fry adding a buzzer to beep quickly to indicate that it is safe to cross, for the benefit of visually impaired pedestrians.

Wired communication

Site: DTAM Online Training Platform Printed by: loanna Matouli
Course: Advanced sensors Date: Friday, 8 December 2023, 4:39 PM
Book: Wired communication

Description

Before we compare concrete systems, it makes sense to look at the distinction between wireless and wired home automation
systems. The choice between wireless and wired is an obvious starting point when choosing a suitable home automation system or
industrial solution. If it is not possible to lay cables, because you do not want to mess up your house for milling pipes, most wired
solutions are already eliminated in advance. In industry, it is commmon to use wired solutions, such as KNX and PLC.

Table of conftents

1. KNX

1. KNX

KNX is the most widely used standard for building automation in commercial environments. The standard provides protocols for
networks with twisted pair (knx-tp), power line (knx-pl), ethernet (knxnet/ip) and wireless (knx-rf) as communication medium. The
KNX standard is a combination of the three former EHS, Batibus and EIB/Instabus standards. The standard is being developed by
the KNX Association, which has more than three hundred members. Before a product is allowed to bear the KNX label, it is
subjected fo a conformity test by an independent test lab to ensure interoperability of the products of the different KNX
manufacturers.

KNX is based on a hierarchical network topology, which is suitable for automating large buildings, such as office buildings and
hotels. The highest level in the hierarchy is a domain of up to fiffeen areas connected to a backbone line via backbone area
couplers. Each area consists of up to fifteen lines that are connected to the backbone area coupler via a trunk line. A maximum of
256 devices can be connected to a line. A domain, including the couplers, can therefore contain a maximum of 65,536 devices.

In wired installations, twisted pair is most often used as cabling, while knxnet/ip is mainly used for the backbone connections.
Twisted pair cabling can be laid in free, line or star fopology. In a home installation, most components are usually mounted
centrally in the meter cupboard. KNX has a data rate of 2600bit/s. In practice this is sufficient, because the KNX telegrams are short
and contain almost only confrol and measurement information. The bus signal is robust and can span distances of hundreds of
metres.

.PLC

A programmable logic confroller (PLC) is a device that processes information from inputs and conftrols outputs according to a set
program. A classic PLC works cyclically and first reads all inputs, then runs the program and writes the output values to a table.
When the program is finished, the output values are adjusted. Depending on the size of the program, a cycle lasts a few

milliseconds and then starts again. PLCs are widely used in industry to contfrol machines, but are also well suited for building
automation or other applications where input-to-output is processed. Examples of PLC systems are Wago /O System 750, Siemens
S7 and Beckhoff TwinCat.

A PLC consists of a conftroller that can be expanded with I/O and communication modules as desired. Manufacturer-specific
software is often required to program the PLC. The initial costs of the conftroller and the programming software are high, but
afterwards a PLC can be equipped with extensions relatively affordably. Affordability applies in particular to digital inputs and
outputs, which are used, for example, to read the position of a wall switch and to control a relay. For the Wago 750 system, an
extension module with four digital outputs costs just 30 euros. Analogue I/O modules are significantly more expensive than digital
inputs and outputs. Expansion modules are available for various analogue signal fransmission standards, such as 0-10V, 4-20mA
and PT100.

Data visualizing platforms

Site: DTAM Online Training Platform Printed by: loanna Matouli
Course: Advanced sensors Date: Friday, 8 December 2023, 4:39 PM
Book: Data visualizing platforms

Table of contents

1. Data visualizing with Grafana
2. Open platform for interacting sensors (Home Assistant)

3. Processing data with Node-RED

1. Data visualizing with Grafana

Grafana is a multi-platform open-source analytics and inferactive visualisation web application. It provides charts, graphs, and
alerts for the web when connected to supported data sources. A licensed Grafana Enterprise version with additional capabilities
is also available as a self-hosted installation or an account on the Grafana Labs cloud service.

It is expandable through a plug-in system. End users can create complex monitoring dashboards using interactive query builders.
Grafana is divided into a front end and back end, written in TypeScript and Go, respectively.

As a visualisation fool, Grafana is a popular component in monitoring stacks. Learning to work with Grafana: information can be
found at Grafana.com. You can play around in a sandbox.

2. Open platform for interacting sensors (Home Assistant)

Home Assistant is free and open-source software for home automation designed to be a central confrol system for smart home
devices with a focus on local control and privacy. It can be accessed through a web-based user interface by using companion
apps for Android and iOS, or by voice commands via a supported virtual assistant such as Google Assistant or Amazon Alexa.

After the Home Assistant software application is installed as a computer appliance, it will act as a central control system for home
automation, commonly referred to as a smart home hub, that has the purpose of conftrolling loT connectivity technology devices,
software, applications and services supported by modular integration components, including native integration components for
wireless communication protocols such as Bluetooth, Zigbee and Z-Wave (used to create local personal area networks with small
low-power digital radios), as well as having support for controlling both open and proprietary ecosystems if they provide public
access via, for example, an Open APl or MQTT for third-party integrations over the Local Area Network or the Internet.

Information from all devices and their atftributes (entities) that the Home Assistant software application sees can be used and
controlled from within scripts trigger automations using scheduling and "blueprint" subroutines, e.g. for controlling lighting, climate,
enfertainment systems and home appliances. You will find lots of information on the official website: http://home-assistant.io

3. Processing data with Node-RED

As the website https://nodered.org/ explains, Node-RED is a programming tool for wiring together hardware devices, APls and
online services in new and interesting ways. Node-RED is a powerful open-source tool that provides a browser-based flow editor to
create event-driven applications that can run on multiple platforms such as Raspberry Pi, Arduino, or even in the cloud. It is built
on top of Node.js, which is a server-side JavaScript runtime environment. Node-RED is designed to simplify the process of wiring
together different devices, APIs, and services using a drag-and-drop interface, without requiring any programming skills.

It provides a browser-based editor that makes it easy to wire together flows using the wide range of nodes in the paletfte that can
be deployed to its runtime in a single-click.

Browser-based flow edifing

e
Lo

c

jhoii

Node-RED provides a browser-based flow editor that makes it easy to wire together flows using the wide range of nodes in the
palette. Flows can be then deployed to the runtime in a single-click.

JavaScript functions can be created within the editor using a rich text editor.

A built-in library allows you to save useful functions, templates or flows for re-use.

Built on Node.js

The light-weight runtime is built on Node.js, taking full advantage of its event-driven, non-blocking model. This makes it ideal to run
at the edge of the network on low-cost hardware such as the Raspberry Pi as well as in the cloud.

With over 225,000 modules in Node's package repository, it is easy to extend the range of palette nodes to add new capabilities.

Social Development

The flows created in Node-RED are stored using JSON which can be easily imported and exported for sharing with others.

An online flow library allows you to share your best flows with the world.

Exercise: Connecting Siemens PLC to Raspberry Pi &
Node-RED

Site: DTAM Online Training_Platform Prinfed by: loanna Matouli
Course: Advanced sensors Date: Friday, 8 December 2023, 4:39 PM

Exercise: Connecting Siemens PLC to Raspberry Pi &
Node-RED

Book:

Description

This exercise consists of three steps:
e Data collection from PLC;
¢ Analogue signal management in PLC;

* Reading PLC variables from Node-RED;

Table of contents

1. Data collection from PLC

2. Hardware and software requirements

3. Analogue signal management in PLC

4. From the input card to a numeric value

5. How to convert the numerical value to areal value

6. VALUE CONVERSION

7. PLC program for analogue signal scaling

8. SCALING USING MATH OPERATOR IN LADDER LANGUAGE
9. SCALING USING MATH OPERATOR IN SCL LANGUAGE

10. SCALING USING BUILT-IN FUNCTIONS "SCALE_X" AND "NORM_X"
11. Read PLC variables from Node-RED

12. Reading the value from PLC

1. Data collection from PLC

The DTAM project focuses on data collection and elaboration. The data is sourced from several kinds of sensor connected fo a
Raspberry Pi via a GPIO interface or GROVE boards.

To give areal experience of an Industry 4.0 scenario in the DTAM course, it is necessary to also evaluate the origin of the data
from industrial sensors passing through a PLC system or to generally read data from PLCs.

A lot of PLCs have built-in functionality for data sharing, e.g. in a MMTQ or OPCUA server, but for the DTAM loT lab structure we
propose a different solution: connection of the PLC to the Raspberry Pi and data collection with Node-RED.

This guide will explain how to this can be done using a Siemens PLC connected to a Raspberry Pi via ProfiNet (Ethernet Protocol
used by Siemens).

2. Hardware and software requirements

In addition fo the loT lab configuration, the following components and software are needed to collect data from a PLC.

Siemens PLC Simatic $7-1200 or $7-1500. Most of the 1200 family PLCs have analogue inputs available on the main board; if they
are nof present, an analogue input card is also required.

Ethernet cable to connect PLC and Raspberry Pi
One or more analogue sensors. The type of sensor is irrelevant: the signal is always managed in the same way in the PLC.

Siemens Tia Portal programming system

Figure 1.1 - Simatic §7-1214 PLC (www.siemens.com)

3. Analogue signal management in PLC

Reading the analogue value from a sensor

The industrial standard of the analogue signals provides methods to convert the measured physical value to an electric signal
readable from the PLC. The most commonly used of these are:

Voltage from 0OV to 10V
Voltage from -10V to 10V
Current from 4mA fo 20mA
Current from OmA fo 20mA

Other specific values for some temperature sensors

It is compulsory to then match the conversion system used by the sensor with the corresponding type of analogue input PLC card
(or with the right configuration in case of a multi-standard card).

Example: Connection of a 4-20mA sensor (https://instrumentationtools.com/plc-analog-input-scaling)

In this example, a flow meter could measure a flow from 0 to 700 GPM (gallons per minutes), converting the measurement intfo an
electric current signal. 0 GPM is converted to 4mA, 700 GPM is converted to 20mA, and all the infermediate GMP values are
converted linearly in a variable current between 4 and 20 mA.

4. From the input card to a numeric value

The purpose of an analogue input PLC card is to convert the electric signal generated by sensors to a numerical valuethat can be
used in the PLC program.

The format of this number depends on the method of conversion used by the PLC manufacturer, which could propose different
resolution conversions and consequentially different resolutions of the final value. Refer to the manufacturer's manual for
specifications.

Siemens $7-1200, used in this guide, has a conversion system with an overflow management, with the electric signal input being
converted fo an integer between 0 and 27684 (+27648 if the signal allows negativity). This value will be provided in the PLC input
memory areaq, for example in the Input Word number 64 (IWé4). The Word address is configurable in the input card properties.

Sensor ;
i Analog input
conversion

Temperature 0-10V to

0-100°C ‘
0 0-10V 0-27648pt

0°C I oV 0 pt

53,5°C — 535V 14791 pt

100°C — 10V 27648 pt

11]

Figure 2: Example of an analogue signal conversion

5. How to convert the numerical value to a real value

The value given in the IW is relative to the sensor measurement but is not easy fo interpret, so further conversion is required to
obtain areal value representing the starting measurement.

In order to use a signal read on an analogue input, it must be converted back to a value that can be used in the system. A series
of operations must be provided to obtain the value of the physical quantity again.

It is therefore necessary to know:
The minimum value of the signal read (from sensor characteristics)
The maximum value of the signal read (from sensor characteristics)

The number of points with which the signal is read by the controller (see manufacturers' manuals — for the $7-1200 this is 27648).

MEASUREMENT RANGE

The first step is to know the working range of the measured signal, or rather the difference between the minimum and maximum
values of the signal generated by the sensor.

Measure Measure o
) Range
min value max value
Air pressure sensor 0 bar _ 25 bar > 25 bar
Weight sensor 10kg — 50kg - 40kg
Temperature sensor -50°C —_— 100°C > 150°C

Figure 2.3- Range calculation

RESOLUTION CALCULATION

We then proceed by calculating the resolution, which is the value that will correspond to the change of 1 point on the input signal.
The resolution will then be the minimum appreciable change from the signal reading, and is calculated by dividing the range by
the number of points used by the controller to convert the signal (e.g. 27648 for S7-1200)

Note that the resolution is a decimal value. It needs to be stored as a real value (also known as float value in other PLCs)

Range Range/points Resolution

Air pressure sensor 25 bar %ﬁ.‘l 25/27648 |, 0,0009141
Weight sensor 40kg -]: 40/27648 ——— 0,001446
Temperature sensor 7 150°C lfﬁ"; 150/27648 = 0,005425

Figure 2.4 - Resolution calculation

6. VALUE CONVERSION

After calculating the resolution it will be sufficient to multiply it by the value read on the analogue input, obtaining the value of the

physical quantity.

However, this value still does not take into account any OFFSET from 0, so it will still be necessary to add the minimum value of the
signal read to the result

Value = (resolution * input value) + minimum value

) Sensor Input card Range & Scaled .vaIUez
Air pressure : . . (resol x input) +
conversion conversion Resolution :
vmin
[p -
0 bar — oV - 0 pt . L (0,0009141*0)+0=
‘ Range: 25bar 0 bar
*
13,375bar ~— 535V ~ 14791 pt L. . (0,0009141*14791)
| | Resolution: +0= 13,375 bar
i ’ 0,0009141 ' .
25 bar] 10V —» 27648 pt . (0,0009141*27648)
rq +0= 100 bar
Figure 2.5 - Air pressure value scaling procedure example
Air pressure Sensor Input card Range & [Scalfd _"E‘IU:;
8 conversion conversion Resolution AESOLX PU
vmin
0,001446*0)+10
10 — 4 ma — 0 pt o
= « Range: =10 kg
40 kg
30kg ~— 12ma —» 13824pt __, (0,001446*13824)+10
Resolution: S30ke
50kg — 20 ma —» 27648 pt 0,001446 {0,0014;165’;2;:48“10

Figure 2.6 - Weight value scaling procedure example

Scaled value=

Sensor Input card Range & _
Temperature .) : (resol x input) +
conversion conversion Resolution)
vmin
50°C = Oma = Opt ., (0,005425 X0}
| Range: 150°C HN=ERA
o | | (0,005425x13824)+
25°C — 10ma —4 13824 pt ol (-50) = 25°C
; 0,005425 : |
100°C ~— 20ma — 27648pt 1y (0,005425x27648}+

Figure 2.7 - Temperature value scaling procedure example

(-50)= 100°C

/. PLC program for analogue signal scaling

There could be several possible conversion methods in a PLC program. We suggest three different ways considering different
languages and the use of built-in functions instead of elementary math operations.

In each solution we take the same system into account:
Measurement of temperature with a 0-20mA sensor, reading range between -50°C and 100°C
Temperature sensor connected to analogue input IWé4 "Temperature_Sensor” (Int type), 27648 points

Scaled data stored in the PLC Data Block DB1 (Temp_Data, variable "ACT_Temperature" (Real type). The DB has to be configured
as "non optimised" in their properties to allow communication with the Raspberry Pi and Node-RED

Other variables, used to store any intermediate results, are defined as Temp variables in the program block

8. SCALING USING MATH OPERATOR IN LADDER LANGUAGE

Segmento 1: Range & Resolution Calculation

suBs DIV
Real Auto (Real)
EN ENO EN ENQ —
100.0 —{IN1 OUT}— #Range 27648.0 — N1 OUT — #Resolution
50.0 —4IN2 #Range — IN2

Segmento 2: Value Scaling

MUL sus
Auto (Real) Auto (Real)
EN ENO EN ENQ —t
#Resolution — N1 OUT — #No_Offset_value #No_Offset_value — N1 %DB1.DBDO
. -50.0 — IN2 *Temp_data®™ ACT_

"Temperature_ OUT — Temperature

sensor” —EIN2 3¢

Figure 2.8 - Scaling using math operator in LADDER

=] o W = W N =

(ni]

9. SCALING USING MATH OPERATOR IN SCL LANGUAGE

//Range calculation
¢range := (100.0 - (-50.0)):

//Resolution calculation
#resolution := (27648 / #range):;

[//Value Scaling
"Temp data".ACT Temperature := ("Temperature_sensor™ * gresolution) - (-50.0);

Figure 2.9 - Scaling using math operatorin SCL

10. SCALING USING BUILT-IN FUNCTIONS "SCALE_X" AND "NORM_X"

This solution uses two different Siemens Built-in functions:

NORM_X: converts a value between a minimum and a maximum to a floating point value between 0.0 and 1.0. If the value
entered corresponds to the minimum value, the output will be 0.0. If the value entered corresponds to the maximum value, the

output will be 1.0. This value could be interpreted as the percentage value of the input referred to its minimum and maximum, 0
and 27648

SCALE_X: converts a floating-point value between 0.0 and 1.0 to a value within the range stated between minimum value and

maximum value. If the value entered corresponds to 0.0, the output will be the minimum value. If the value entered corresponds to
1.0, the output will be the maximum value

¥ Segmento 1: Inputanalisys with norm_x

NORM_X
Int to Real
EN ENO i
0~ MIN #Value_
e t
2 OUT — percentage
“Temperature_
sensor’ — VALUE
27648 — MAX

v Segmento 2: Value scaling with scale X

SCALE_X
Real to Real
EN ENO 1
S00—n %DB1.DBDO
#Value_ "“Temp_data® ACT_
percentage — VALUE OuT == Temperature
100.0 — MAX

Figure 2.10 - Scale_x e Norm_x

11. Read PLC variables from Node-RED

Node-RED configuration

Once Node-RED is launched on your Raspberry Pi, you need to add a dedicated node type in order to manage the
communication between PLC and Node-RED.

In the Node-RED palette, several optional nodes are available dedicated to PLC communications for a lot of PLC manufacturers.
The one shown in this guide allows communication with Siemens S7 PLC and is called "node-red-contrib-s7".

User Settings
View Nodes Install
sort. | I¥ az recent| O

Keyboard , e

Q node-red-contrib-s7 313960 X
Palette R

& node-red-contrib-s7 @

A Node-RED node to interact with Siemens S7 PLCs
® 310 E® 4 months ago

Figure 3.1 - Node to install for PLC communication

After "node-red-contrib-s7" installation, three new nodes will appear in the node menu. The complete reference for these nodes is

available here: https://flows.nodered.org/node/node-red-contrib-s7

v plc

Figure 3.2 PLC communication nodes

12. Reading the value from PLC

Before establishing communication, it is compulsory fo verify these two conditions in the PLC Simatic S7:
"Optimized block access" must be disabled for the DBs we want to access (image)

In the "Protection" section of the CPU Properties, enable the "Permit access with PUT/GET"checkbox

In Node-RED you have to use the node "§7 in" in order to read a PLC variable and configure it following these steps:

In the node properties, you have to define the PLC connection by clicking on "Add new S7 endpoint". Once the connection is
defined, it remains available for use in other nodes.

Edit s7 in node
Delete | Cancel -
‘ & Properties -3 {HI"__*IJ
¥PLC Add new s7 endpoint... || #
= Mode Single variable v w
XC Variable v N
Emit only when value changes (diff)
® Name Name

Figure 3.3 - Adding S7 communication in node-RED

The PLC is defined by its communication type (Ethernet or MPI), its IP Address, and the position of the CPU in the Simatic
configuration (Rack and Slot)

Edit 57 in node > Edit s7 endpoint node

Delete s m

& Properties ‘ i } [‘
Connection Variables ’
& Transport Ethernet (1ISO-on-TCP) v
@Address 10.109.211.99 | Port 102 | | all]
= Mode Rack/Slot v
o Rack 0 Slot |1

£ Cycle ime |1000 o ms

©® Timeout |2000 : ms

¥ Name ‘ -

Once the PLC connection has been established, you must add the variable or variables in the node. The "address" field must
contain the area/block you want fo read (DB1 in this example) and the data (RO means Real data in the 0 DB address, or rather
the DBDO).

Edit s7 in node > Edit s7 endpoint node

Delete Cancel -

& Properties & |

)

Connection Variables

= Vanable list

DB1,RO Temperature x
"
+A @ Remove a . Impx LE

Figure 3.5 - Variable definition in the node

Here are some examples that may help you address your variables: https://flows.nodered.org/node /node-red-contrib-s7

Node S7 is now configured and the PLC variable value is now available on the node exit point for all your purposes

Figure 3.6 Use of S7_In functio

Sensors challenge

Site: DTAM Online Training_Platform Printed by: loanna Matouli
Course: Advanced sensors Date: Friday, 8 December 2023, 4:40 PM
Book: Sensors challenge

Description

This challenge has to be done in a group of students and is used to proove your skills with the sensors module, as well as "soft skills"
like working together.

1. The advanced sensorica challenge

2. Group challenge

3. Goals to reach with the challenge

4. Time necessary to complete the challenge

5. Assessment (rubrics)

Table of contents

1. The advanced sensorica challenge

A factory builds motors and generators. The quality control department is looking for a way to predict hardware failures before
they actually happen.

The department wants to be able to inform customers and schedule a maintenance appointment before a motor breaks down.

Sensors should be created that record data to a cenfral database, and a process should monitor the data and send warnings if a
machine is about to break down.

Make sure the solution includes at least 4 of the following items:
1. A sensoring device that records motor temperature
2. A sensoring device that records motor vibrations (movements)
3. A sensoring device that records electrical current the motor is using
4. Sensor data is send to a database or message queue

5. A dashboard is available to look at the gathered data, and shows graphs for specific time periods
(minute/hour/day/week/month/year)

6. A prediction algorithm is running and generates a warning when a motor is about to break down (measure data from normal
operation and measure data from just after a breakdown and compare values)

The device that's being used to read the sensors is not mandatory, could be a raspberry, an arduino, a PLC or something else.

The protocol for sending measurements to storage is not mandatory, could be MQTT, a python script, a PHP script, C or anything
else; students will give arguments for their choice.

See the evaluation rubric to see details.

2. Group challenge

To do this challenge, you will need to form a group with 2-4 other students.
You will be instructed by a teacher on how fo perform the challenge.

When your group is finished, the product and the process will be evaluated by a teacher using the evaluation rubric (see below).

3. Goals to reach with the challenge

Choose appropriate sensors for a given problem, and build sensoring devices (raspberry, arduino)
Choose a data collection service (database or IOT hub or message queue)

Have sensoring device report measurements to database and messaging bus

Have dashboard subscribe to message bus and display trends over time

Have students decide on the best communication protocol between devices, given the problem domain (devices with low
power requirements / devices to be offline for extended periods of time / devices in environments with lots of data corruption,
like factories)

Program sensoring devices using Python for measurement correction / quality, and to provide different aggregation levels
(distinct measurements, as well as averages per minute, hour, day, week, month and year)

4. Time necessary to complete the challenge

The challenge could be completed in 40 hours. That could be 5 full working days (1 full week), or 10 week x 4 hours, or another
schedule.

5. Assessment (rubrics)

