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Description

In this section you will get infroduced to what is Machine Learning.
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1. Definition

Humans try to understand their environment by observing it and creating a simplified (abstract) version of it called a mental
model or simply a model. The method is known as induction, and the building of such a model is known as inductive learning.
Furthermore, humans may organize and link their experiences and observations by forming new structures known as mental
patterns or simple patterns [1]. For example, a human can easily identify all the animals in the following Figure 1.1. But can a

computer do that as efficiently2 And if yes, how?

Machine learning is the creation of models or templates based on a set of data, from a computer system.
A more “scientific” definition of Machine Learning is the one bellow:

Machine learning (ML) is a branch of research devoted to understanding and developing 'learning' methods, or methods that use
data to improve performance on a set of tasks. [2] Artificial intelligence is highly associated with ML and many scientists consider it
fo be a subsection of it as Figure 1.2 shows. Machine learning algorithms create a model based on tfraining data fo make
predictions or judgments without having to be explicitly programmed fo do so. [3]

"~ Artificial inteligence

Deep Learring Traditional Modets

Machine learning algorithms are utilized in a broad range of applications, including medicine, email filtering, speech recognition,
and computer vision, where developing traditional algorithms to do the required tasks is difficult or impossible. [4] Machine learning
is also closely connected other scientific fields such as computational statistics, which focuses on generating predictions with
computers; nevertheless, stafistical learning is not all machine learning. The discipline of machine learning benefits from the study
of mathematical optimization since it provides tools, theory, and application fields [5]. Data mining is also, a closely connected
topic of research that focuses on exploratory data analysis via unsupervised learning. Furthermore, some machine learning
implementations employ data and neural networks in a way that replicates the operation of a biological brain [4].






2. Machine Learning Categories

As we saw, ML is part of a bigger picture but also itself consist of many, many parts. Figure 1.3 depicts the various Machine
Learning branches. In this course we are going to focus on classical learning methods.

RENdRCEnEm MACHINE
LEARNING LEARNING

Depending on the type of the "signal" or "feedback" provided to the learning system, machine learning systems are generally
categorized into three major categories [8]:

o Supervised learning: A "teacher" presents the computer with sample inputs and desired outputs, with the purpose of learning a
general rule that maps inputs fo outputs.

o Unsupervised learning: is when the learning algorithm is not given labels and is left fo uncover structure in the data on its own.
Unsupervised learming can be a goal in and of itself (finding hidden patterns in data) or a means fo an end (finding hidden
patterns in data) (feature leaming).

o Reinforcement learning: occurs when a computer program interacts with a dynamic environment to achieve a certain
objective (such as driving a vehicle or playing a game against an opponent). The software is given input in the form of incentives
as it navigates its issue space, which it strives to optimize.

The most common ones are the first two and they will be further explained in the upcoming sections. The comparison between
supervised and unsupervised learning techniques can be summarized in the following Table 1.



Parameters 5upervi9ed ML LIneuper'vised ML

Input data Labeled Data Unlabeled Data
Compu-l-a-l'!onal Simpler method Computationally complex

complexrl'y

Accuracy Hia]hly accurate Less accurate

Other tfechniques that do not cleanly fit into this three-fold categorization have been created, and often more than one is
employed by the same machine learning system. For instance, Boosting Methods and Meta Learning [?]. Moving forward to the
present frends, Deep learning has been the primary technique for much continuing work in the field of machine learning as of
2020 [10].

Deep learning is a combination of computing power and neural networks to learn complicated patterns in the data. The state-of-
the-art deep learning fechniques identify objects in images and words in sounds. The research in towards the creatfion of more
general applications and the performance of highly optimized tasks. Task such as automatic language translation, medical
diagnoses and social and business solutions are the most advanced for pattern recognition with deep learning.

In essence, the main difference for machine and deep learning is shown in Figure 1.4, where the feature extraction is done by the
algorithm and not by humas in the Deep Learning making the result uninterpretable. Deep learning methods are frequently seen
as a black box, with most empirical rather than theoretical confirmations [11].
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3. How it's made

There are several approaches in Machine Learning field, but how do we build them? The techniques we explained earlier may be
far apart, however the main building approach is the same. To create a machine learning system, the engineers should first
prepare the system for the data acquisition and the data retrieval. Then, the most suitable algorithms, both basic and advanced
are chosen and automated and iterative processes are implemented for the algorithms. The system is scaled for accepting more
data and finally a complete model is created.

The machine learning process follows the requirements described above and can be summarized in five steps as shown in Figure
1.5:

1. Identification of the relevant datasets and preparation for the analysis.
2. Selection of the type of the machine learning approach fo use.

3. Build of the analytical model based on the chosen algorithm.

4. Model training on the data sets, revising as needed.

5. Execution of the model to generate scores, decisions, results.



4. Why insist on Machine Learning though?

As previously said, articulating the knowledge of the problem in a conventional language is extremely difficult to impossible to
tackle big problems with many data and complex interactions between data. However, such issues have a significant influence

on society and are of tremendous scientific and commercial interest. As a result, solving them with machine learning fechniques
seemed an obvious choice.

The most common examples of the problems are:

Use of historical data for decision making processes, e.g., patience’s' medical records are used for medical knowledge and
reports.

Complex computer programs, such as: robofts that learn their environment and can wonder in it, self-learning games efc.
Learning of human behavior and intelligence: speech patterns and face recognition.
Development of programs adaptable to the user, e.g., speech recognition and written patterns recognition.

Creation of real Artificial Intelligence: if a smart system, which is genius created cannot learn for its mistakes, it is not smarter
than a worm or a cat.



5. Examples of machine learning use

One of the most common applications of machine learning in day-to-day use is Facebook’s recommendation engine for the news
feed. Facebook uses machine learning to personalize the delivered feed. When a member frequently reads a particular group'’s
post, the recommendation engine shows more of the group’s activity higher in the feed. The engine atfempfs fo discover the
member's pattern of online behavior and reinforce the algorithm. When a member stop reading the group and changes patterns
the recommendation engine adapts and after a while there are new relevant suggestions in the feed.

Other applications that heavily based on machine learning these days are:

° Customer Relationship Management. CRM software use machine learning models and analyze emails. They also support the
sales teams to respond to the most important messages first. The most advanced systems can recommend possible effective
responses.

° Business Intelligence. Bl and analytics companies use machine learning in the software to recognize important data, patterns
and anomalies in the data.

° Human Resource Information Systems. HRIS use machine learning models to decide the best candidates for open positions.

° Self - driving cars. They are dependent on the machine learning algorithms to recognize the visible object and alert the
driver. This leads to semi — autonomous cars.

° Virtual assistants. They combine supervised and unsupervised machine learning models to interpret the human natural
speech and apply context to it and the correctly reply.

° Financial services. Banks use machine learning to identify knowledge of the data and to prevent fraud. The knowledge also
leads to investment opportunities and personalized suggestions to clients.

° Government. Several government organizations use machine learning and analyze sensor data from fraffic cameras, CCTV
(Closed Circuit TV) and other sources for efficiency and accuracy. Governments also analyze census data for health and social
security services and economic reliability.



6. Machine Learning advantages and disadvantages

The advantages and disadvantages of the machine learning application led us to the most suitable implementations and where
machine learning techniques provide the best results, because machine learning is a very powerful tool that can optimize the
solutions in data science.



6.1. Advantages

The main advantages of machine learning are:
1. Easy identification of trends and patterns

Machine learning looks at large amounts of data and finds trends and patterns that are not apparent to humans. The best
example comes from the e-commerce websites that can detect and understand the browsing behaviors of the users and the
purchase history and then suggest the right products for them or the relevant products with their behavior. The techniques are also
used for advertising similar products to the users.

2. Automation = no human intervention

A machine learning application is independent from the developer. The code is minimal and gives the ability to the machines to
learn. ML lets the machines make predictions and improve the algorithm on their own. Antivirus software is such an example. They
learn and filter the new threats as they recognize them. These ML applications are also able to recognize spams.

3. Continuous improvement

Machine learning algorithms become better as they gain experience. The longer they work, the more efficient and accurate they
become, and this leads to better decisions. The weather forecast models work this way: the amount of data increases over time
and the machine learning algorithms makes more accurate predictions faster.

4. Handling of multi = dimensional and multi - variety of data

The machine learning algorithms are good at handling data with multiple dimensions and variety in dynamic or uncertain
environments.

5. A wide variety of applications

Machine learning can work either for e-commerce or healthcare or even manufacturing. It holds the capability to deliver
personalized experience to the users for each application.

f DISADVANTAGES \

p———————
Data acqusiton

-
fﬁ
Time and
resoLrsed
—
g —
Feaits
h!gr‘prefabil\'l
_— S
——
Hqﬂ error

susceptiolty

)




6.2. Disadvantages

The main disadvantages of the machine learning applications are:
1. Data acquisition

The machine learning algorithms require massive data sefs to train on and the datasets should be unbiased, to include all kinds of
the available data and be of high quality. Also, most of the applications need to wait for the datasets to be created.

2. The time and the resources needed

Machine learning needs enough time so the algorithms can learn from the datasets and be developed enough to provide
accurate and relevant results. Furthermore, machine learning algorithms require large computational power from the systems.

3. Interpretation of the results

One of the major challenges of the machine learning applications are the ability to interpret the generated results with accuracy.
For this, the responsive algorithms should be carefully chosen.

4. Highly susceptible to errors

The machine learning algorithms are highly susceptible to errors. When an algorithm is trained with small datasets that are not
inclusive the predictions are biased coming from a biased fraining dataset. For example, the irrelevant advertisements displayed
to customers. In the machine learning applications, these errors can be undetected for long periods. When such an error is
recognized, it also takes some time to identify the sources of the issue and then correct it.



6.3. Advantages applications

The above advantages have been applied to many aspects of enfrepreneurship. The following is a list of some of these
applications.

1. Simplification of Product Marketing and leads to Precise Sales Forecasts

ML assists businesses in a variety of ways, including improved product promotion and more accurate sales forecasting. ML has
several benefits for the sales and marketing industry, the most notable of which are:

° Massive Data Consumption from a diverse range of sources.

Due to large amount of data consumed in ML, based on the consumer behavioral patterns, these collected data may be utilized
to regularly assess and adapt your sales and marketing efforts.

° Rapid Evaluation Prevision and Processing

Because of the speed with which machine learning consumes data and discovers important facts, you can take suitable decisions
at the proper time. The customer will receive the best possible offer at any given fime, as machine learning will help optimize this
offer, without you having to spend fime planning and making the best ad accessible to your customers.

° Analyze Previous Customer Behaviors

ML will allow you to study and evaluate data relating to previous behaviors or results. As a result, you will be able to create better
predictions of client behavior based on the new and varied data.

2. Allows for more accurate medical diagnoses and predictions

Another important branch ML is used is healthcare industry, as helps identifying high-risk patients make near-perfect diagnoses,
recommend the best possible medicines, and predict readmissions. These are largely based on publicly available datasets of
anonymized patient records as well as the symptoms they present. Faster patient recovery will be facilitated by near-perfect
diagnoses and improved pharmaceutical prescriptions, which will eliminate the need for unnecessary medications. In this
approach, machine learning allows the medical industry to enhance patient health at a low cost.

3. Time-Intensive Documentation in Data Entry is simplified

It is well-known that all organizations prefer to automate their data entry process but data duplication and inaccuracy are
obstacles and need be addressed. Predictive modeling and machine learning techniques, on the other hand, can greatly
improve this condition. Machines can now do fime-consuming data entry chores, freeing up your experienced personnel fo focus
on other value-added work.

4. Enhances the accuracy of financial rules and models

Machine Learning has a huge influence on the financial industry as well. Portfolio management, algorithmic frading, loan
underwriting, and, most critically, fraud detection is some of the frequent machine learning benefits in finance. Furthermore,
according to an Emnst & Young paper titled "The Future of Underwriting," machine learning allows for continuous data evaluations
for defecting and assessing abnormalities and subtleties. This aids in the refinement of financial models and rules.

5. Strong filter spam

One of the first challenges that machine learning handled was spam detection. To filter out spam, email providers used rule-based
systems a few years ago. However, with the advent of machine learning, spam filters are creating new rules to delete spam letters
using brain-like neural networks. The neural networks evaluate the rules over a large network of computers to identify phishing mails
and junk mail.

6. Boosts the Manufacturing Industry’s Predictive Maintenance efficiency

Corrective and preventative maintenance procedures are in place in manufacturing companies. However, these are frequently
ineffective and pricey. This is where machine learning may be quite useful. Machine learning assists in the development of highly
effective predictive maintenance programs. Following such predictive maintenance programs reduces the likelihood of
unexpected breakdowns, lowering the need for wasteful preventative maintenance.



7. Improved Customer Segmentation and Prediction of Lifetime Value

Marketers now confront enormous issues such as customer segmentation and predicting lifetime value. Sales and marketing feams
will have access to massive volumes of relevant data gleaned from a variety of sources, including lead data, website visits, and
email campaigns. With machine learning, however, accurate forecasts for incentives and specific marketing offers are simple to
produce. Marketers that are well-versed in machine learning are increasingly using it to reduce the guesswork that comes with
data-driven marketing. For example, analyzing data reflecting a specific group of users' behavioral patterns during a trial period
might assist organizations in estimating the likelihood of conversion to a paid version. Customer interventions are triggered by such
a model to better engage customers in the frial and encourage them to convert early.

8. Recommendation of the Right Product

Any sales and marketing plan, including upselling and cross-selling, should include product recommendations. ML models will look
at a customer's purchasing history and, based on that, identify the things in your inventory that the consumer is interested in. The
program will look for hidden patterns in the goods and group similar things together into clusters. Unsupervised learning is a form of
machine learning algorithm that does this. Businesses will be able to provide better product suggestions to their clients as a result of
this strategy, which will encourage product purchase. Unsupervised learning aids in the development of a superior product-based
recommendation system in this way [14].



/. Machine learning for manufacturing applications

The manufacturing applications that are based on machine learning are the following:
1. Predictive Maintenance

ML plays a significant role in the field of maintenance as with predictive maintenance, equipment failures are predicted before
they occur, so timely maintenance is scheduled, and downtime is minimized. It has been observed that it is preferable to allocate
resources for planned maintenance than fixing breakdowns in order to save valuable time. Machine learning algorithms have a 92
percent accuracy rate in predicting equipment failure, helping organizations to better plan their maintenance plans and improve
asset dependability and product quality. According to studies, applying machine learning and predictive analytics raised total
equipment efficiency from 65 percent to 85 percent.

2. Quality Assurance

Machine learning is an important tool in product inspection and quality confrol. The historical data provide very useful information
to ML-based computer vision algorithms to categorize products according to the quality (acceptable products or defective
product). So, the procedure of inspection and monitoring is becoming automated. In that case, it is not required making a library
of possible defects, as the only thing that it is necessary is good samples. However, an algorithm that compares samples to the
most prevalent types of flaws may be created. Using ML offers important savings in visual quality contfrol in manufacturing. An
inferesting Forbes’s survey shows ML-based automated quality testing may improve detection rates by up to 90%.

3. Logistics Management of inventory

Logistics has now become a vital part in all sectors of industry. Especially, in the manufacturing industry to successfully execute all
production processes. Once again, ML plays a crucial role as provides automating several logistics-related tasks, increasing
efficiency and lowering expenses. Manual, time-consuming procedures such as logistics and production-related documentation
are expected fo cost the average US firm $171,340 per year. It is obvious that ML can automate these regular processes, saving
thousands of man-hours each year.

4. Product Development

One of the most popular applications of machine learning is product development. To achieve the greatest outcomes, both new
product design and existing product improvement require substantial data analysis. Machine learning tfechnologies may assist in
the collection and analysis of vast amounts of product data to:

0 Recognize consumers demands and desires,
o find vulnerabilities that have been buried,
o and discover new business chances

This can lead to advance existing product designs and develop new items that will provide new income streams for the business.
Moreover, enterprises can minimize risks involved with developing new goods by making better-informed decisions based on
improved data.

5. Cybersecurity

To function properly, machine learning solutions rely on networks, data, and technological platforms — both on-premises and in
the cloud. The security of these data and systems is crucial, and machine learning can help by restricting access to important
digital platforms and data. Individual users' access to sensitive data, the apps they use, and how they connect to it may all be
streamlined with machine learning. This can help businesses secure their digital assets by immediately recognizing irregularities and
taking appropriate action.

6. Robotics

Human workers sfill play a significant role in modern production. However, factory automation is increasing since robots can
already undertake many difficult activities, with the exception of a few areas that require extremely high accuracy, which can
only be provided by human professionals. In the future, robots that are flexible enough to operate alongside humans might take



over a significant portion of production. They will be able to function in a variety of challenging and dynamic conditions with little
human intervention. Advanced machine learning fechniques may be used to assist firms in developing complicated strategies
and production processes thanks to robotics [15] .



8. Global market examples

Machine learning is having a game-changing influence in manufacturing. Danone Group, a French food business, employs
machine learning fo increase the accuracy of its demand forecasting. This has resulted in a:

Forecasting mistakes are reduced by 20%.
30 percent reduction in missed revenues

Demand planners' workload is reduced by 50%.

Fanuc, a Japanese automation business, employs robots to run its operations around the clock. The robots can manufacture
critical components for CNCs and motors, run all production floor gear continuously, and provide continuous monitoring of all
processes [16].

Meanwhile, the BMW Group employs computerized image recognition for quality control, inspections, and the elimination of false
problems (deviations from target despite no actual faults). As a result, they've attained great levels of production accuracy [17].

Porsche is another firm that has profited from ML in production. They employ autonomous guided vehicles (AGVs) to automate
large aspects of the car production process. The AGVs transport car body components from one processing station to the next,
removing the need for human interaction and making the plant more resistant to disturbances such as pandemics [18].

These are just a few instances of organizations using artificial intelligence in manufacturing to boost overall production and
operational efficiency.
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1. Supervised Learning Definition

Supervised learning is one of the main categories of Machine Learning.

As the name indicates, there is a supervisor present as a tutor. In reality,
supervised learning is when we use well-labeled data to instruct or frain a
machine. This indicates that the correct answer has already been assigned to
some data. After that, the computer is given a fresh collection of examples
(data) to analyze the training data (set of training instances) and provide an
appropriate result from labeled data using the supervised learning approach
[16].

Consider the following scenario: you are handed a basket containing several fruits. The first stage now is to feach the machine alll
of the different fruits one by one, as follows:

The object will be labeled as —Apple if it has a spherical form with a dip at the top and is red in color.
The item will be labeled as -Banana if its form is a long curving cylinder with a Green-Yellow tint.

Now imagine that once you've trained the data, you've given a new independent fruit, like a banana from the basket, and
requested it fo be identified.

Because the system has already learnt from previous data, it is necessary to apply it intelligently this time. It will categorize the fruit
based on its shape and color, then validate its name as BANANA and place it in the Banana category. As a result, the machine
learns from training data (a fruit basket) and then applies what it has learned to test data (new fruit).

The above task was a classification problem that can be solved via supervised learning techniques. There are two main types of
problems for supervised learning:

° Classification: In classifications problems the output variable is a category. For instance, “Green” or "Yellow” or “spam” and
“not spam”.

° Regression: In regression problems the output variable is a real value like “euros” or “length”.

"Labeled" data is dealt with or learned with in supervised learning. This signifies that some information has already been labeled
with the right answer [17].
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1. Industrial Examples

Now let’'s examine more industrial examples of Supervised Learning techniques.

Energy efficiency is a critical problem in developing sustainable society. Global primary energy consumption is predicted to rise by
1.6 percent each year due to rising populations, rising incomes, and the industrialisation of developing nations. This scenario
highlights concerns about the rising scarcity of natural resources, environmental degradation, and the imminent threat of global
climate change [18].

Understanding energy demands at reasonably high geographical and temporal precision is crucial for improving the efficiency of
supply systems and thereby reducing energy usage. A precise estimate of energy demand might give helpful information for
energy generation and buying decisions. Furthermore, a precise prognosis would help to minimize overloading and enable for
effective energy storage.
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Description

The supervised learning involves many categories. However, the most common and used techniques are the following:
a) Classification and
b) Regression

are described in detail further below.
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1. Classification

The problem of determining which of a collection of categories (sub-
populations) an observation (or observations) belongs to is known as
classification. Assigning a diagnosis fo a patient based on observable features
and categorizing a specific email as "spam” or "non-spam’ are two examples
(sex, blood pressure, presence or absence of certain symptoms, etc.).

Individual observations are sometimes broken down into a collection of measurable attributes referred to as explanatory variables
or features. These afttributes can be categorical (e.g."A,""B," "AB," or "O" for blood type), ordinal (e.g. "big." "medium," or "small’),
infeger-valued (e.g. the number of instances of a specific word in an email), or real-valued (e.g. the number of occurrences of a
particular word in an email) (e.g. a measurement of blood pressure). Other classifiers use a similarity or distance function to
compare data to prior observations.

The technique of guessing the class of given data points is known as classification. Classes are sometimes known as goals, labels, or
categories. The job of estimating a mapping function (f) from discrete input variables to discrete output variables is known as
classification predictive modeling .

A classifier is an algorithm that accomplishes classification, particularly in a concrete implementation. The word "classifier' can also
refer to the mathematical function that franslates input data to a category and is implemented by a classification algorithm.

The terminology used in various disciplines is fairly diverse. The properties of observations are known as explanatory variables (or
independent variables, regressors, etc.) in statistics, where classification is often done with logistic regression or a similar procedure,
and the categories to be predicted are known as outcomes, which are considered to be possible values of the dependent
variable. In machine learning, instances are the observations, features are the explanatory factors (grouped info a feature vector),
and classes are the potential categories to be predicted. Other areas may use alternative terms; for example, in community
ecology, "classification” usually refers to cluster analysis.



1.1. Relation to other problems

Pattern recognition is the assignment of some form of output value to a given input value. Classification and clustering[1]_are two
instances of the more general issue of pattern recognition. Other examples include regression, which assigns a real-valued output
to each input; sequence labeling, which assigns a class to each member of a sequence of values (for example, part of speech
tagging, which assigns a part of speech to each word in an input sentence); parsing, which assigns a parse tree to an input
sentence, describing its syntactic structure; and so on.

[1] Clustering is further explained in the following sections.



1.2. Classification tfree analysis

A classification chart, often known as a classification tree analysis (CTA), is a diogram that shows the structure of a categorization
scheme.

Classification is the act of recognizing, differentiating, and comprehending concepts and things, and classification charts are
designed to aid in the creation and visualization of the end result. "In a classification chart, the facts, data, and so on are
organized so that the place of each in relation to the others is plainly seen,” Brinton says. Although a quantitative analysis adds to
the usefulness of a classification chart, it is not required.” [19]. "In any chart-making, the material to be displayed must be carefully
collated before it can be plotted," Karsten noted. We must dig into the complexities of categorization and indexing in order to
comprehend the classification chart.



1.3. Types of classification

Classification has fo main types:

° Binary Classification: When we must categorize given data into 2 distinct classes. Example — On the basis of given health
conditions of a person, we must determine whether the person has a certain disease or not.

° Multiclass Classification: The number of classes is more than 2. For Example — On the basis of data about different species of
flowers, we must determine which specie does our observation belongs to.
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1.4. The training

To create a classification tree, the user needs first utilize the training samples. This is referred to as the fraining phase. This free is then
used to classify the entire picture.

To begin, the root is allocated to all of the training pixels from all of the classes. Because the base of the tree contains all fraining
pixels from all classes, an iterative procedure is started to expand the free and divide the classes. CTA uses a binary tree structure
in Terrset, which means that the root, as well as all following branches, may only develop two additional internodes before splitting
or furning info a leaf. The binary splitting rule is defined as a threshold in one of the many input pictures that isolates the most
homogeneous subset of training pixels from the rest of the training data.

The tree evolves by recursively dividing data into new internodes containing increasingly homogenous sets of training pixels at
each infernode. When a freshly developed internode includes exclusively training pixels from one class, or when pixels from one
class dominate the population of pixels in that internode, and the dominance is at an acceptable level set by the

user, the infernode may become a leaf. The final classification tree rules are generated when there are no more internodes to
divide [20].



1.5. The classification

Image classification is the second step in the CTA process. Using the decision rules of the previously trained classification tree, each
pixel is labeled with a class in this stage. A pixel is initially supplied into the tree's root, where its value is compared to what is already
in the tree, and the pixel is then transferred to an internode based on where it sits in respect to the splitting point. The procedure
continues until the pixel reaches a leaf, at which point it is assigned a class.

The classification rules from the roof to the leaf are straightforward to learn and comprehend, thanks to an intuitive graphical
depiction in the interface. Numerical pictures, such as reflectance values from remotely sensed data, categorical images, such as
a land use layer, or a combination of the two can be used as input images.

If you know that a data set follows a specific distribution pattern, you should use a good parametric classifier instead of the
classification tree technique. If the picture data is known to follow a Gaussian distribution, a parametric classifier like MAXLIKE in
TerrSet may be preferable [20].



1.6. How does classification work?

Assume we need to determine whether a patient has a specific ailment based on three characteristics known as features. There
are two conceivable consequences as a result of this [21]:

1. The patient is suffering from the ailment in question. In other words, a "Yes" or "True" outcome.
2. The patient is free of sickness. "No" or "False" as a response.

This is a problem of binary classification. We have a training data set of observations, which consists of sample data with real
classification resulfs. On this data set, we train a model called Classifier, which we then use to predict whether a certain patient
would get the disease or not. As a result, the outcome now depends on:

1.  How effectively these characteristics "map" to the final result.
2. The accuracy of our data. We are referring to stafistical and mathematical attributes when we say quality.
3. The degree to which our Classifier can generalize the link between the features and the output.

4. The values of the x1 and x2.



1.7. Generalized classification block diagram

The following elements are included in the generalized classification block diagram [22]:

1.

2.

X: pre-classified data, in the form of a N*M matrix. N is the number of observations and M is the number of features.
y: An N-d vector of anticipated classes for each of the N observations.

Feature Extraction: Using a sequence of transformations, extracting meaningful information from input X.

Machine Learning Model: We'll train the "Classifier".

y': The Classifier's predicted labels.

Quality Metric: A metric for assessing the model's performance.

Machine Learning Algorithm: The technique for updating weights w', which iteratively updates the model and "learns".

x Feature H>0 Y
Trainirg Data Bl b ML model ; »
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1.8. Types of classifiers

There are various types of classifiers. Some of them are:
° Linear Classifiers: Logistic Regression.

Tree-Based Classifiers: Decision Tree Classifier.

° Support Vector Machines.

° Artificial Neural Networks.

° Bayesian Regression.

° Gaussian Naive Bayes Classifiers.

° Stochastic Gradient Descent (SGD) Classifier.

° Ensemble Methods: Random Forests, AdaBoost, Bagging Classifier, Voting Classifier, ExtraTrees Classifier.



1.9. Decision Trees

A decision free, in its most basic form, is a graphical depiction of all possible solutions to a problem. In foday's supervised learning
settings, free-based algorithms are the most commonly used algorithms. They're easy to understand and envision, and they're quite
adaptable. Tree-based algorithms may be utilized for both regression and classification issues, however they are more commonly
employed for classification problems [23].

Let's look at an example of a decision free: | didn't eat supper at my normal hour last evening since | was preoccupied with other
matters. | had butterflies in my tummy later that night. | figured that if | wasn't hungry, | could have just gone to sleep, but since |
wasn't, | opted to eat something. | had two choices: order anything from outside or prepare things yourself.

| thought that if | ordered, I'd have to set aside at least INR 250. | decided to order it anyhow because it was late and | was not in
the mood fo cook. As seen in the diagram below, the entire episode may be visually depicted.

The following are the terminology used to describe a decision free:
° Parent node: A parent node is the higher hierarchically connected node of any two connected nodes.
° Child node: A kid node is the lower hierarchically connected node in any two connected nodes.

° Root node: The root node is the node from which the tree grows, and it has no child nodes. There is no parent node for the
root node. (in the figure above, the dark blue node).

° Leaf Node/leaf: Leaf nodes, or simply leaf, are nodes at the end of the tree that do not have any children. (in the picture
above, green nodes).

° Internal nodes/nodes: Internal nodes, or simply nodes, are found between the root node and the leaf nodes. Internal nodes
have at least one child and a parent. (In the figure above, the red nodes).

° Splitting: Adding two or more children to a node or dividing a node into two or more sun-nodes.
° Decision node: When a parent node splits into two or more offspring nodes, the node is referred to as a decision node.
° Pruning: Pruning is the process of removing a decision node's sub-node. You might think of it as the total opposite of splitting.

° Branch/Sub-iree: A branch, also known as a sub-tree, is a portion of the whole tree.



1.10. Pros and Cons of Decision Trees

Pros of a decision free:

° Easy to see and interpret: Its graphical depiction is highly straightforward to understand, and it can be interpreted without
any prior understanding of statistics.

° Helpful in data investigation: With a decision free, we may quickly find the most important variable and the relationship
between variables. It can assist us in the creation of new variables or the grouping of certain features into a single bucket.

° Data cleansing isn't as necessary: Because if is somewhat resilient to outliers and missing data, it requires minimal data
cleansing.

° The data type is not a constraint: It is capable of dealing with both category and numerical data [25].
Cons of decision tree:

° Overfitting: A single decision tree has a tendency to overfit the data, which may be mitigated by imposing limitations on
model parameters such as tree height and pruning (which we will discuss in detail later in this article)

° For continuous data, the fit isn't perfect: When numerical variables are classified into distinct groups, part of the information
associated with them is lost.



1.11. Real World Binary Classification use case

In the semiconductor processing business and more specifically in the silicon wafer manufacturing sector, dry pumps are utilized to
seal the wafers in vacuum and be protected from dust. The light-weight dry pumps that are used in that production phase, pass
some quality stress tests after their production. For each pump that fails there is a log record indicating the failure mode and the
duration that the pump was working before it fails. The factory that produces the pumps, wants to know whether a newly
produced pump is going to fail in less than a year of continuous operation. To handle this problem a binary classification problem
can be formed, where the quality test results can be used as features and the failures log can be utilized to label each feature
vector (failin less than a year or not).



2. Regression

The second major type of supervised learning is the regression.

Regression analysis is a set of statfistical processes for estimating the relationships
between a dependent variable (often referred to as the 'outcome' or'response’
variable, or a 'label' in machine learning terminology) and one or more
independent variables (often referred to as 'predictors,"covariates,'explanatory
variables,'or'features’).

This approach facilitates in the detection of variable correlations and allows the continuous output variable to be predicted using
one or more predictor variables. Common uses include prediction, forecasting, time series modeling, and identifying the causal-
effect link between variables. Regression analysis is a set of statistical methods for evaluating relationships between a dependent
variable and one or more independent variables. It may be used to assess the strength of a relationship between variables as well
as forecast how they will interact in the future.

Linear regression is the most frequent type of regression analysis, in which one finds the line (or a more sophisticated linear
combination) that best fits the data according to a set of mathematical criteria. Ordinary least squares, for example, finds the
single line (or hyperplane) that minimizes the sum of squared differences between the genuine data and that line (or hyperplane).

Regression analysis is generally applied for two reasons that are conceptually separate.

° For starters, regression analysis is extensively used for prediction and forecasting, and it shares a lot of ground with machine
learning.

° Second, regression analysis may be used to identify causal links between independent and dependent variables in particular
scenarios. Importantly, regressions reveal correlations between a dependent variable and a group of independent variables in a
given dataset by themselves. A researcher must carefully demonstrate why existing correlations have predictive power for a new
context or why a link between two variables has a causal interpretation before using regressions for prediction or inferring causal
relationships. When ufilizing observational data to determine causal links, the latter is very crucial.



2.1. What is the purpose of regression analysise

As previously stated, the use of regression analysis in the prediction of a continuous variable is beneficial. In the real world, there
are a variety of scenarios where we need to make future predictions, such as weather conditions, sales predictions, marketing
frends, and so on.

The following are some of the reasons why regression analysis is used:
Through regression, an estimate of the relationship between the target and the independent variable is provided.
It is very effective in finding frends in data.
It aids in the prediction of real and continuous variables.

By using the regression, we can clearly determine the most essential and least significant aspects, as well as how each one
affects the others.



2.2. Types of regression

Regression analysis comes in a variety of forms [26]. The following are most important:

1. Linear regression

Linear regression is one of the most fundamental forms of regression in machine learning. It consists of a predictor variable and a
dependent variable that are linearly connected to each other. As previously said, linear regression uses the usage of a best fit line.
When your variables are linearly connected, you should apply linear regression. If you're predicting the impact of increased
advertising spend on sales, for example. However, because this method is prone to outliers, it should not be utilized to evaluate
large data sets.

It's way to implement using Python to create linear regression. All you have to do now is use the appropriate packages, functions,
and classes. NumPy is a basic Python scientific library that allows you to execute a variety of high-performance operations on
single- and multi-dimensional arrays. It also includes a number of mathematical functions. It is, after all, open source.

If you're new to NumPy, start with the official NumPy User Guide and read Look Ma, No For-Loops: NumPy Array Programming.
Furthermore, the performance benefits you may receive while using NumPy can be shown in the Pure Python vs NumPy vs
TensorFlow Performance Comparison.

Scikit-learn is a commonly used Python machine learning toolkit that is built on top of NumPy and a few additional libraries. It
includes tools for data preparation, dimensionality reduction, regression, classification, clustering, and more. Scikit-learn
(https://scikit-learn.org/stable/), like NumPy (https://numpy.org/), is free and open source.

To understand more about linear models and how this package works, go to the scikit-learn website and look at the article
Generalized Linear Models.

If you want to use linear regression but need something more than scikit-learn can provide, statsmodels is a good option. It's a
robust Python module that can be used to estimate statistical models, run tests, and more. It's also free and open source.

A model that examines the connection between a dependent variable and an independent variable is known as simple linear

regression. The following equation expresses the simple linear model:

Y=at+tbX+te

Where:
o Y:the dependent variable
o X:the independent (explanatory) variable
o a:the intercept
o b:the slope

o e:the residual (error)

Simple Linear Regression

¥
2. Assumptions for the Linear Regression



Linear regression is a widely used prediction approach for defining a linear connection between independent and dependent
variables. When learning about predictive algorithms, regression analysis is typically one of the first things you learn. It is still a potent
approach frequently used in statfistics and data science, as easy as it appears (after you have used it enough). In this post, we'll go
over the assumptions you'll need to examine in order to use linear regression appropriately [27].

There are five important assumptions in linear regression analysis. These are the following:
Mulficollinearity is litfle or non-existent.
We're looking into a linear relationship.
Autocorrelation is minimal to non-existent.
Data is homoscedastic

The distribution of all variables is normal.

A Linear Relationship is being investigated.

When conducting a linear regression model, we want to identify a linear connection between the independent and dependent
variables, as the name suggests. Scatter plots are an easy visual technique to determine this.

The Distribution of Variables Is Normal

The variables have a normal distribution, which is the following assumption. That is to say, we want to make sure that y is a random
variable with a normal distribution and that its mean is on the regression line for each x value.

The Q-Q-Plot is one method for visually testing this assumption. The Quantile-Quantile plot (Q-Q) is a tool for visually comparing two
probability distributions.

To make this Q-Q plot, we'll use scipy's probplot function, which compares a given variable to a normal probability.

What is the best way to tell if your variable has a normal distribution? Is there a red line in the graph above? To infer that it follows a
normal distribution, the points must lie on this line. Yes, it does in our situation! Because of our finy sample size, a few points are
outside the line. Because it is a visual test, you may determine how severe you want to be in practice.

There is Little or no Mullicollinearity

The term "multicollinearity” refers to the fact that your independent variables are significantly associated with one another. Keep in
mind what your Xs are named; they're called independent variables for a reason. If they have multicollinearity, they are no longer
independent, which causes problems when modeling linear regressions.

We may leverage the power of Pandas and their styling options (in development) to visually test for multicollinearity. These options
allow us to decorate data frames according to the data within them.

Let's start by creating a regression dataset in the same way we did in the last example, but this fime with three X variables. We next
furn this array info a Pandas data frame and compute the pairwise correlation of our columns using the Pandas corr function.

fcreats sampl datazet with 3 x features

%3, y3 = make regresaion(n_samplessl00, n features=3, noise=20)

fconvert to & pandas datafrasme
import pandas as pd

df = pd.DataFrams (x3)
df.columns = ['x1','x2',"'x3']

#generate correlation matrix

eorr = df,core{)

There is Little or no Autocorrelation



This assumption is similar to the one before it, except it applies to the residuals of your linear regression model. We won't dig deeper
info this assumption until our next post, when we delve into running a linear regression model, because establishing a linear
regression model is outside the scope of this article.

Homoscedasticity

The homoscedasticity assumption is the last assumption of linear regression; this analysis is also applied to the residuals of your linear
regression model and can be readily evaluated with a scatterplot of the residuals.

When the noise in your model can be represented as random and consistent across all independent variables, you have
homoscedasticity. If you see a frend in the scatterplot of residuals from your linear regression study, this is a stfrong indication that
this assumption is being broken.

The 5 basic assumptions of linear regression were tested using Python. The first three are used before starting a regression analysis,
while the final two (AutoCorrelation and Homoscedasticity) are used on the residual values once the regression study is finished.

3. Multiple Linear Regression
With the excepftion that numerous independent variables are utilized in the model, multiple linear regression analysis is substantially
the same as simple linear regression analysis. Multiple linear regression is expressed mathematically as follows:
Y=a+bX;+cX, +dX; +e
Where:

o Y:the dependent variable

o X, X5, X, : the independent (explanatory) variable
o a:the intercept

o b,c, d:the slopes

o e:theresidual (error)

The requirements for multiple linear regression are the same as for the basic linear model. However, because multiple linear analysis
involves numerous independent variables, there is additional need for the model:

° Non-collinearity: refers to the fact that independent variables should have a low correlation with one another. It will be
difficult to analyze the genuine relationships between the dependent and independent variables if the independent variables are
strongly linked.
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Regression analysis is a very effective machine learing approach for data analysis. Here, we'll look at how it works, the many sorts,

and what it can do for your company.



The use of regression analysis to predict future events between a dependent (goal) and one or more independent variables is
known as predicting (also known as a predictor). It can, for example, be used to anficipate the link between reckless driving and
the overall number of road accidents caused by a driver, or, in the case of a business, the influence on sales and the amount of
money spent on advertising.

One of the most prevalent machine learning models is regression. It varies from classification models in that it estimates a numerical
value rather than identifying the category to which an observation belongs. Forecasting, time series modeling, and determining
the cause-and-effect connection between variables are some of the most common applications of regression analysis.

You may use the same methods for mulfiple linear regression as you would for simple regression.

4. Non -Linear Regression

The statistical approach of nonlinear regression is used to characterize nonlinear interactions in experimental data. When a
nonlinear regression model is described as a nonlinear equation, it is assumed to be parametric. For non-parametric nonlinear
regression, machine learning approaches are commonly utilized.

The dependent variable (also known as the response) is modeled as a function of a set of nonlinear parameters and one or more
independent variables in parametric nonlinear regression (called predictors). The model might be univariate (with a single
response variable) or multivariate (with several response variables) (multiple response variables).

An exponential, frigonometric, power, or any other nonlinear function can be used as a parameter. An iterative approach is
commonly used to determine nonlinear parameter estimations.

y=fX.p)+e

B: where denotes the nonlinear parameter estimates that must be obtained
£: error terms

The following are some of the most popular nonlinear regression fitting algorithms:

Gradient descent algorithm
Gauss-Newton algorithm

Levenberg-Marguardt algorithm

5. Polynomial regression

Polynomial regression uses a linear model to model a non-linear dataset. It's the same as trying to put a square peg into a round
hole. It uses a non-linear curve and operates similarly to multiple linear regression (which is basically linear regression with several
independent variables). It's used when there are a lot of non-linear data points.

The model converts these data points into polynomial features of a particular degree and uses a linear model to represent them.
Instead of the straight line used in linear regression, a polynomial line, which is curved, is used to best suit them. However, because
this model is prone to overfitting, you should scrutinize the curve near the end to avoid strange-looking outcomes.

Although there are more forms of regression analysis than those described here, these five are the most common. If you choose
the appropriate one, your data will be able to reach its full potential, putting you on the road to greater insights.



2.3. Real world Regression use case

A company that has a fleet of vehicles the use of which is part of its smooth day-to-day operations would like to minimize the
number of times its vehicles are out of service. Suppose are working as a Machine Learning Expert in this company and you have
to build a model that predicts when a vehicle will experience malfunctions. You have numerous incoming measurements but you
have discovered that the most valuable one is the temperature of the engine. For forecasting the future values, you can apply
linear regression to the incoming measurements in order to calculate the tfrend of the line that the individual measurements create.
If the line presents a highly ascending slope at a point, we can assume that there is an incident that is causing malfunction to the
vehicle. Moving forward, we can assist the training of our model by feeding the real values that actually happen to the vehicle.

Use historical data to predict future values within a user-defined window.
Locating ectopic points in ferms of:

Slope

Predicted Price/Current Price

Estimated value

A point is considered an outlier when it is outside the limits set by the user.
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Description

Now let’'s examine a famous algorithm that implements supervised learning techniques, the k-nearest neighbors algorithm or kNN.

Mathematicians have developed a variety of machine learning models that you may utilize. One of these is the k-Nearest
Neighbors algorithm [28].

All of these models have their own characteristics. If you work in machine learning, you should be familiar with all of them so that
you can apply the appropriate model to the appropriate circumstance. Next, you'll see how kNN stacks up against other machine
learning models to see why and when to employ it.

The kNN algorithm is a supervised machine learning method. You have two sorts of variables in supervised models at the same
fime:

A. The dependent variable y, commonly known as the y variable, is the target variable.
B. Independent variables, often known as x variables or explanatory variables

The goal is to predict the target variable. These variables are not known in advance and depend on the values of the
independent variables. Obviously, the independent variables are defined. With solving an equation is easy to calculate or predict
the target variable. In this sense, is similar to y = ax + b case.

Looking the following graph, the target variable is the shape of the data point. The height and width are the independent
variables.

Historical Observations Mathematical Abstraction
Height Height

* 5 ¢ *

Width Width

So, what we see in this graph? Each data point has its own height, width, and shape. There are crosses, stars, and triangles the
symbols. A decision rule learned by a machine learning model is shown on the right.

The observations highlighted with a cross in this example are tall but not wide. Stars are towering and broad at the same time.
Triangles are not just short, but they may also be wide or narrow. Essentially, the model has learnt a decision rule that uses only the
height and breadth of an observation to determine whether it is more likely to be a cross, a star, or a triangle.

The kNN technique is a supervised machine learning model. That is, it uses one or more independent variables to predict a target
variable. A nonlinear learning algorithm is kNN. Nonlinear models are those that split their cases using a method other than a line.
The decision tree, which is just a lengthy set of if... else statements, is a well-known example. If...else statements in the nonlinear
graph would allow you to draw squares or any other shape you chose. A nonlinear model applied to the example data is seen in
the graph below:
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This graph demonstrates how a nonlinear decision may be made. Three squares make up the decision rule. A new data point's
anticipated form is determined by the box in which it falls. It's worth noting that utilizing a line won't allow you to fit everything in at
once: A total of two lines are required. This model might be recreated using the following if...else statements:

It's a triangle if the data point's height is low.
Otherwise, it's a cross if the data point's width is small.
Oftherwise, it's a star if none of the above is true.
As mentioned above, kNN is an example of a nonlinear model. For both classification and regression, kNN is a supervised learning.

Some models are only capable of regression, whereas others are only capable of classification. The kNN method adapts to both
classification and regression in a smooth manner. In the following section of this lesson, you'll learn exactly how this works.

kNN can be characterized as interpretable and fast. Model complexity is a final factor to consider when describing machine
learning models. Machine learning, particularly artificial intelligence, is booming right now, and it's being used for a variety of
complex activities including analyzing text, photos, and voice, as well as self-driving automobiles.

Advanced and complex models, such as neural networks, are likely to be able to learn more than a k-Nearest Neighbors model.
Those complex forms, after all, are excellent learners. However, take intfo account that this level of sophistication comes at a cost.
You'll need to invest a lot more effort on development to make the models suit your predictions.

To fit a more complicated model, you'll also need a lot more data, which isn't always accessible. Finally, more complex models are
more difficult for us humans to comprehend, which may be quite helpful at fimes.

It is easy o understand that the kNN model is particularly significant. As, it enables users to comprehend and analyze what is
occurring within the model, and it is quite quick to construct. As a result, kNN is an excellent model for many machine learning
applications that do not necessitate the employment of extremely complicated algorithms.
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1. Pros and Cons of kNN

K-Nearest Neighbors, or K-NN for short, is a supervised machine learning technique that uses a labeled (Target Variable) dataset to
predict the class of a new data point [30]. The K-NN technique is a reliable classifier that is frequently used as a benchmark for
more complicated classifiers like Arfificial Neural Networks (ANN) and Support Vector Machines (SVM) (SVM). A few of the reasons
to use the K-NN machine learning algorithm are listed below:

o K-NN is easy to use and understand: The K-NN technique is straightforward to comprehend and implement. To categorize a
new data point, the K-NN method searches the whole dataset for K nearest neighbors.

o There are no assumptions in K-NN: Because K-NN is a non-parametric method, some assumptions must be met in order to
implement it. Data must meet several assumptions in parametric models like linear regression before they can be applied, however
this is not the case with K-NN.

o There is no Training Step: K-NN does not create a model directly; instead, it tags new data entries based on past data. In the
nearest neighbor, new data would be labeled with the majority class.

o It always changing: Because it is an instance-based learning method, k-NN is a memory-based method. As additional training
datais collected, the classifier adjusts instantaneously. It enables the algorithm to react swiftly to changes in the input during real-
fime operation.

o For a multi-class issue, it's quite simple to implement: Most classifier algorithms are simple to implement for binary issues but
require more work to implement for multi-class problems, but K-NN adapts to multi-class problems without any additional effort.

o Both classification and regression may be done using it: K-NN has the benefit of being able to be utilized for both classification
and regression issues.

o One Hyper Parameter: K-NN may take a long to choose the initial hyper parameter, but once it is chosen, the rest of the
parameters are aligned to it.

o There are several distance criteria to choose from: When generating a K-NN model, the K-NN method allows the user to pick the
distance.

. Euclidean Distance
. Hamming Distance
. Manhattan Distance
. Minkowski Distance

K-NN provides a number of advantages, but it also has a number of significant disadvantages or constraints. A few disadvantages
of K-NN are described below.

° K-NN lazy algorithm: K-NN is a simple method to build, but as the dataset expands, the algorithm's efficiency or speed
decreases rapidly.

° The Curse of Dimensionality: While KNN works well with a small number of input variables, it fails to anticipate the output of
additional data points as the number of variables grows.

° K-NN requires homogenous characteristics: If you elect to create k-NN using a common distance, such as the Euclidean or
Manhattan distances, it is absolutely required that features have the same scale, since absolute differences in features must have
the same weight, i.e., a given distance in feature 1 must mean the same for feature 2.

° Optimal number of neighbors: One of the most difficult aspects of K-NN is determining the best number of neighbors to
consider when categorizing fresh data.



° Data that is imbalanced causes issues: It has been observed that on imbalanced data, k-NN doesn’'t perform well. If we
assume two classes, A and B, and the majority of the training data is classified as A, the model will eventually favor A. This might
lead to the classification of the less common class B being incorrect.

° Outlier sensitivity: Because it chooses neighbors based on distance criteria, the K-NN method is particularly sensitive to
oufliers.

° Missing Value Treatment: K-NN is incapable of dealing with missing values by default.
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1. Supervised learning advantages

Supervised learning allows collecting data and produces data output from previous experiences.
Helps to optimize performance criteria with the help of experience.

Supervised machine learning helps to solve various types of real-world computation problem:s.



2. Supervised learning disadvantages

° Classifying big data can be challenging.

° Training for supervised learning needs a lot of computation time. So, it requires a lot of time.
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1. General description

A steel processing company, as part of its effort to apply predictive maintenance to its equipment, forecasts the next day's energy
consumption in order to anticipate anomalies in production operations. You, as a lead machine learning expert, are asked to
implement a simple yet effective prediction technique given a dataset containing historic measurements. The given data contains
the following attributes

Date: Continuous-time data taken on the first of the month
Usage_kWh: Industry Energy Consumption Continuous kWh
Lagging Current: reactive power Continuous kVarh
Leading Current: reactive power Continuous kVarh
CO2: Continuous ppm
NSM: Number of Seconds from midnight Contfinuous S
Week: status Categorical (Weekend (0) or a Weekday (1))
Day of the week: Categorical Sunday, Monday: Safturday
Load Type: Categorical Light Load, Medium Load, Maximum Load
Instructions:
The first task is to implement a Linear Regression algorithm, preferably in Python.

1. Download the csv file from the following link (password: df@mml)

https://versions.aimms.gr/index.php/s/4fvrVA60K1fd8kZ

2. Load the downloaded csv file (datasetl.csv) and apply the Linear Regression method it is recommended to use the scikit
learn library for Python to predict the power usage of a steel processing factory in the data Calculate the values of the Mefrics
Correlation, Mean Squared Error, and R?, create the graph that will capture the points of the data set on the plane as well as the
regression line.

3. Copy and paste the following notebook to your python IDE and follow the instructions to accomplice the exercise
requirements. You should fill the missing_parts of the exercise as dictated in the provided comments.



# Exercise 1 - Supervised learning

# LINEAR REGRESSION ALGORITHM TEMPLATE

# Complete the missing code by implementing the necessary commands.
#

# From the 'sklearn’ library, we need to import:

# 'datasets’, for loading our data

# 'metrics', for measuring scores

# 'linear_model', which includes the LinearRegression() method

# From the 'scipy’ library, we need to import:

# 'stats’, which includes the spearmanr() and pearsonr() methods for computing correlation
# Additionally, we need to import

# 'pyplot' from package 'matplotlib’ for our visualization purposes

# 'numpy’, which implements a wide variety of operations

#

# IMPORT NECESSARY LIBRARIES HERE
import pandas as pd

from sklearn import
#

# Load the dataset
#

# ADD COMMAND TO LOAD DATA HERE
steel_power = pd.read_csv('../input/dataset1.csv') # change the path according to the
location

# With this
#

# Get samples from the data, and keep only the features that you wish.
#

# Load the features and the target value which in our case is the Usage KhW
# X: features

# Y: target value (prediction target)

X = steel_power.drop('Usage_kWh', axis = 1)

y = df['Usage_kWh']

#

# Create a linear regression model. All models behave differently, according to
# their own, model-specific parameter values. In our case, however, the linear
# regression model does not have any substantial parameters to tune. Refer

# to the documentation of this fechnique for more information.

#

# ADD COMMAND TO CREATE A LINEAR REGRESSION MODEL HERE




linearRegressionModel =
#

# Split the dataset that we have info two subsets. We will use
# the first subset for the training (fitting) phase, and the second for the evaluation phase.
# By default, the frain set is 75% of the whole dataset, while the test set makes up for the rest
25%.
# This proportion can be changed using the 'test_size' or 'train_size' parameter.
# Also, passing an (arbitrary) value to the parameter random_state' "freezes" the splitting
porocedure
# so that each run of the script always produces the same results (highly recommended).
# Apart from the train_test_function, this parameter is present in many routines and should
be

# used whenever possible.

_train, x_fest, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42)

# Let's train our model.

# ADD COMMAND TO TRAIN YOUR MODEL HERE
#

# Ok, now let's predict the output for the test input set

# ADD COMMAND TO MAKE A PREDICTION HERE
y_predicted =

#

# Time to measure scores. We will compare predicted output (resulting from input x_test)
# with the frue oufput (i.e. y_test).

# You can call 'pearsonr()' or 'spearmanr()' methods for computing correlation,

# 'mean_squared_error()' for computing MSE,

# 'r2_score()' for computing rA2 coefficient.

# ADD COMMANDS TO EVALUATE YOUR MODEL HERE (AND PRINT ON CONSOLE)
rint()
orint()
orint()

# Plot results in a 2D plot (scatter() plot, line plot())
#




# ADD COMMANDS FOR VISUALIZING DATA (SCATTER PLOT) AND REGRESSION MODEL

# Display 'ticks' on the x-axis and y-axis
plt.xticks()
plt.yticks()

# Show plot
plt.show()

#




2. Desired objectives

Import basic machine learning libraries.

Get familiar with dataset handling.

Split dataset to fraining and festing sections.

Train a Linear Regression Model.

Calculate metrics such as R? score in order to check the sufficiency of the model.

Get familiar with plotting the data.



3. Required material

For the execution of this task, you need to:

1. Install Python 3 Release according to your operation system.
Windows
macOs

other

2. A python IDE is required or you can use Google Colab [1]

[1] Colab allows anybody to write and execute arbitrary python code through the browser, and is especially well suited to
machine learning, data analysis and education.



4. Other requirements

There are no other special requirements for the execution of this exercise.
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1. Unsupervised Learning Definition

Unsupervised learning is a sort of algorithm that uses untagged data to discover
patterns. The goal is that the machine will be pushed to develop a compact
internal picture of its surroundings through imitation, which is a key way of
learning in humans, and then generate inventive material from it. Unlike
supervised learning, in which data is labeled by an expert, such as "ball" or "fish,"
unsupervised approaches display self-organization, which captures patterns as
probability densities or a mixture of neural feature preferences [31].

For example, assume it is shown a picture that has both huskies and chihuahuas that it has never seen before.

such. However, it can classify them based on their similarities, patterns, and differences, allowing us to simply divide the above
image intfo two sections. The first section may have all photos with huskies, while the second half may contain all photos with

chihuahuas.
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Description

Unsupervised learning is classified into two categories of problem:s:

° Clustering: A clustering problem is where you want to discover the inherent groupings in the data, such as grouping
customers by purchasing behavior.

° Association: An association rule learning problem is where you want to discover rules that describe large portions of your
data, such as people that buy X also tend to buy Y.

unsupervised Learring
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1. Clustering

It's essentially a form of unsupervised learning. Unsupervised learning is a technique for extracting references from datasets that
contain input data but no labeled responses. It's a method for identifying significant structure, explaining underlying processes,

generating traits, and groups in a set of samples.

Clustering is the process of dividing a population or set of data points into numerous groups such that data points in the same
group are more similar to each other and different from data points in other groups. It's essentially a grouping of items based on

their resemblance and dissimilarity.

The data points grouped together in the graph below, for example, may be categorized into a single group. The clusters can be

distinguished, and we can see that there are three clusters in the image below.

Clusters aren't all spherical. These data points are grouped based on the premise that each data point must fall within a certain

distance from the cluster center. Outliers are calculated using a variety of distfance measures and approaches.
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An outlieris a data point that deviates considerably from the norm. An outlier
can be caused by measurement variability or by experimental mistake; the
latter is sometimes eliminated from the data set. In statistical analysis, an outlier
can generate major consequences.



1.1. Applications of clustering in advanced Manufacturing

There are numerous applications of cluster analysis across the range of sciences. Indicative,
we present some of them in the list below.

1. Predictive Maintenance

Predictive maintenance is highly depending on anomaly detection therefore in outlier discovery as they indicate non normal
behavior. Clustering based outlier detectors have been used in the industry as they offer numerous benefits such as high accuracy.
Moreover, such applications operate very quickly with the right configurations and can handle big amounts of data thatis a

crucial asset nowadays. Last but to least, the unsupervised characteristics allow us fo detect early unprecedented failures of the
machinery.

2. Field robotics

To follow objects and find outliers in sensor data, clustering techniques are utilized in robotic situational awareness. [32]

3. Pharmacy Industry

For example, to determine structural similarities, 3000 chemical compounds were grouped in the space of 90 topological
indices. [33]



1.2. Clustering methods

There are four main clustering approaches that are based in different mathematical approaches.

° Density-Based Methods: These approaches interpret clusters as a dense area with some similarities and differences to the
space's lower dense region. These algorithms are highly accurate and can combine two clusters. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise), OPTICS (Ordering Points to Identify Clustering Structure), and other algorithms are examples.

° Hierarchical Based Methods: The clusters formed in this method form a tree-type structure based on the hierarchy. New
clusters are formed using the previously formed one. The two categories info which it is divided are the following:

o Divisive (top-down approach)
o Agglomerative (bottom-up approach)

CURE (Clustering Using Representatives), BIRCH (Balanced lterative Reducing Clustering and Hierarchies), and so on are some
examples.

° Methods of Partitioning: These approaches divide the items into k clusters, with each division being a single cluster. This
approach is used to optimize an objective criterion similarity function, such as K-means, CLARANS (Clustering Large Applications
based upon Randomized Search), and others, when distance is a large parameter.

° Grid-based Techniques: The data space is divided info a finite number of cells that form a grid-like structure in this technique.
STING (Statistical Information Grid), wave cluster, CLIQUE (Clustering in Quest), and other clustering processes on these grids are
rapid and independent of the quantity of data items.



1.3. Real world manufacturing use case

In fruit processing industry the categorization of fruit according to its quality characteristics was until recently a laborious job
performed by human resources.

For example, peaches are categorized based on their size, shape and other visual quality indicator. Smaller and less qualitive fruits
(Group 1) are purposed for juice production, medium sized and average quality ones (Group 2) for canning and jam production
and last but not least, the bigger and most undamaged ones (Group 3) for direct consumption. This work, however, can be an
application of the machine learning clustering algorithms.

Installing cameras above the work line can provide us instantly the diameter, the shape, the color and other metrics of each fruit
and feed a clustering algorithm that could sort out each fruit to one of the above groups. The clustering model could have been
trained and categorize the peaches to each group as an experiences fruit selector would.




2. Association

Association rule learning is a machine learning approach that uses rules to
uncover interesting relationships between variables in huge databases. Ifs
goalis to detect strong rules identified in databases using various
interestingness criteria. [34]. Association rules are infended to uncover the rules
that define how or why particular objects are associated in any given
fransaction involving a range of goods.

Rakesh Agrawal, Tomasz Imieliski, and Arun Swami [35] proposed association rules based on the notion of strong rules for detecting
regularities between items in large-scale fransaction data captured by point-of-sale (POS) systems in supermarkets. For example,
the rule found in the sales data of a supermarket would indicate that if a customer buys onions and potatoes together, they are
likely to also buy hamburger meat. Such data may be utilized to make judgments about marketing operations such as special
pricing or product positioning.

Association rules, like the one used in market basket analysis, are used in a variety of applications today, including Web usage
mining, infrusion detection, continuous manufacturing, and bioinformatics. In contrast to sequence mining, association rule
learning normally does not take info account the order of elements inside or across fransactions.

The association rule algorithm itself is comprised of several parameters that might be difficult to perform for people lacking data
mining experience, as well as numerous rules that are tough to comprehend [36]. Despite this, association rule learning is an
excellent technique for anficipating data connectivity behavior. This distinguishes it as an important tool for categorization, or
detecting patterns in data, when using machine learning methods.



2.1. Association categories

The two main types of association rules are the following [37]:
Single-dimensional: refers to one dimension
Multidimensional: refers to more than one dimension

Both forms of association rules can be classified as either Boolean or quantitative. The former is concerned with the existence or
absence of an item, whereas the latter is concerned with numerical values that are divided into item intervals.

Example of single-dimensional:

An association rule that describes customers who buy honey and cheese
Buys \( \lbrace{x, honey}\rbrace \Rightarrow \lbrace{x, cheese}\rbrace \)

Customers who buy honey also buy cheese, according to the rule. Buying honey "triggers" the buying of cheese, as seen by the
direction of the association, which runs from the left to right.

Example of multi-dimensional:
An association rule describing graduate students might read as follows: major
\( \lbrace{x, Computer Engineering}\rbrace AND \)
takes course \( \lbrace{x, Advanced Data Analysis and Decision Making}\rbrace \Rightarrow level \lbrace{x, PhD}\rbrace \)
Another categorization for the association rules:
single-level
multilevel

The former is based on objects that may be articulated at multiple levels in a hierarchy, whereas the later are based on a single
degree of abstraction. A multilevel association rule is demonstrated in the example below (which can be contrasted with the
single-level rule given in the first example)

A multilevel association rule that describes customers buying eucalyptus honey and large white cheese.

\( buys \lbrace{x, eucalyptus honey}\rbrace \Rightarrow buys \lbrace{x, large white cheese}\rbrace \)

The honey and cheese products are split into different types in the above rule, forming a hierarchy. Cheese, for example, is split
info white and yellow varieties, with each of these two types subdivided into small, medium, and large sizes.



2.2. The basics

We use a short example from the grocery realm to demonstrate the ideas. Table 2 depicts a finy database holding the items,
where the value 1 denotes the existfence of an item in the associated transaction and the value 0 represents the absence of an
item in that fransaction. The set of items is:

|I={milk,bread,butter,beer,diapers,eggs,fruit}

A supermarket rule may be as follows: {butter,bread}={milk}. Customers will buy milk if they buy butter and bread.

Transaction ID| milk | bread | butter | beer |diapers| eggs fruit
1 1 1 0 0 0 0 1
2 0 0 1 0 0 1 1
3 0 0 0 1 1 0 0
4 1 1 1 0 0 1 1
5 0 1 0 0 0 0 0

Constraints on various metrics of relevance and interest are used to pick interesting rules from a collection of all feasible rules. The
most well-known limitations are minimum support and confidence levels.

Let XY be itemsets , X=Y an association rule and T a set of tfransactions of a given database. Please keep in mind that this is a very
modest sample. In practice, a rule requires several hundred transactions to be supported before it can be considered statistically
significant, and datasets can contain hundreds or millions of inferactions.

Support

The amount of support indicates how frequently the itemset appears in the dataset [38].
(number of transactions containing A and B)

support = P(AN B) =
. ( ) (total number of transactions)

where A and B are independent transactions that occurred inside the overall set of recorded transactions. Using Table 2 as an
example, the itemset X={beer,diapers} has support of 1/5=0.2 since it happens in 20% of all transactions (1 out of 5 fransactions).
The argument for X's support is a set of preconditions, and as it expands, it gets more restricted (instead of more inclusive) [39].

Confidence
The percentage of all fransactions that fulfill both X and Y is known as confidence [40].

The ratio of transactions having both X and Y to the entire quantity of X values present, where X is the antecedent and Y is the
consequent, is the confidence value of an association rule in terms of T, typically indicated as X=Y.

conf(X = Y) = P(Y|X) supp(X NY) _ number of transactions containing X and Y

supp(X) number of transactions containing X

The equation shows how to calculate confidence by comparing the co-occurrence of transactions X and Y in the dataset versus
fransactions containing only X. This indicates that the total number of tfransactions in X and Y is divided by the total number of
fransactions in X.

For example, Table 2 shows the rule {butter,bread}={milk} which has a confidence of (1/5)/(1/5)=0.2/0.2=1 when a client buys
butter and bread, they also buy milk, according fo the dataset. For transactions comprising both butter and bread, this example
shows that the rule is correct 100 percent of the fime. The rule {fruit}={eggs}, however, has a confidence of
(2/5)/(3/5)=0.4/0.6=0.67. This means that eggs are purchased 67 percent of the time when fruit is delivered. Fruit is purchased a
total of three times in this dataset, with two of those purchases consisting of egg purchases.






2.3. What is the mechanism of Association Rule Learning?

Association rule learning works on the concept of If and Else Statement, such as if A then B [41].

The If element is referred to as antecedent, and then statement is called as Consequent. Single cardinality refers to relationships in
which we can find an association or link between two objects. It's all about making rules, and as the number of objects increases,
so does cardinality. There are numerous metrics for measuring the relationships between thousands of data items. The best known
are described in the above section (The basics).



2.4. Real world Association Rules use case

A type of association rule mining is the sequential pattern mining (SPM), which identifies associations between time ordered
events/records, providing setfs of sequential patterns. A real manufacturing case study is presented in [42], where the goal is to
predict critical failures on aircrafts using post flight report data. When these failures occur, the aircraft must stay on the ground for
control or repair and therefore, being able to predict these failures in advance and plan the corresponding maintenance
increases the availability of the aircraft. The research work [43] applies and evaluates a set of machine learning algorithms on
event logs, which consist of time-ordered events from the alphabet of events included in ATA numbering system
[https://en.wikipedia.org/wiki/ATA 100]; Table | shows an example of an event log file. An event is composed by a timestamp that
corresponds to the time of its occurrence and other attributes that contain information about the event. These attributes may
include a system or subsystem identifier that generated the event, a task id (in information system logs), description about the
activity (in server logs), failure description (in hardware monitoring) and a unique event identifier.

Applying SPM we can discover useful patterns in the data about associations between fault events as a sequence of minor faulfs
or other events can potentially lead to a major failure.

Sys id [Timestamp Eventid [Source |Description

sysl 2013-11-10 6226 3412 failure 1
13:30

sysl 2013-11-10 3401 4902 failure 1
14:33

sys2 2013-12-10 3401 5552 failure 2
10:12

sys3 2013-12-10 408 4414 failure 2
11:40
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1. Advantages

It has the ability to see what human mind cannot visualize.

It is very significant for the industry as well dig hidden patterns which hold utmost importance and has extensive real-time
applications.

An unsupervised job might result in the creation of a completely new company segment or enterprise.
Compared to the supervised learning process, there is a reduction in complexity.
There is no requirement to interpret the relevant labels thus reducing the complexity.

Unlabeled data is a lot easier to get by.
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1. Disadvantages

It is more expensive since human involvement may be required to comprehend the patterns and link them with domain
expertise.

Because there is no label or output metric to certify its usefulness, it is not always assured that the generated results will be
beneficial.

An unsupervised task's sorting and output cannot be precisely defined. It is highly reliant on the model and, as a result, on the
machine.

The precision of the results is frequently inadequate.
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1. Classification vs clustering

Although they are techniques that belong fo one supervised learning and the other to unsupervised learning, both follow
comparable process as they are used for the categorization of items info one or more classes based on the characteristics.
However, these present a slight difference that is related about the labels. For example, clustering does not include labels, while in
the classification, each input instance is given a preset label based on its attributes [44].

Type Description | Fundamental Need Complexity Example
Algorithms

CLASSIFICATION| belongs to |the process of | It haslabel, |more complex|Support vector

supervised categorizing hence a as compared machines,
learning the input fraining and | to clustering Logistic
category instances  [testing dataset regression,
according to | is required to Naive Bayes
their class verify the classifier etc.
labels model.

CLUSTERING belongs to |without the use| Thereisno | less complex | Gaussian (EM)
unsupervised | of class labels, | requirement | as compared clustering

learning grouping the | for a dataset fo algorithm, k-
category instances for fraining | classification means
based on their| and testing. clustering
similarity algorithm, Fuzzy
c-means
clustering
algorithm

Differences between classification and clustering
1. Insupervising learning category, classification is applied while clustering is used for unsupervised learning.

2. Classification is the process of categorizing input instances based on their associated class labels, whereas clustering is the
process of grouping instances based on their similarity without the use of class labels.

3. Because classification has labels, a training and testing dataset is required for confirming the model, but clustering does not
require a training and testing dataset.

4, Compared to clustering, it is certain that classification is more complex. This complexity is due to the existence of many levels
in classification phase, while in clustering only grouping takes place.

5. Logistic regression, Naive Bayes classifiers, Support vector machines, and other classification methods are examples. The k-
means clustering method, the Fuzzy c-means clustering algorithm, the Gaussian (EM) clustering algorithm, and others are examples
of clustering algorithms.
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1. Basics

Machine learning is an emerging fechnology in the computer science, including many different applications in healthcare,
manufacturing, and e-commerce as we have already mentioned in the previous section.

NASA, Uber, Tesla, Google and Amazon all use machine learning in their algorithms. There is at least one more thing these
companies have in common. They all use Python as their preferred language for their machine learning projects. There are several
reasons why Python is so used in machine learning [48]. The main ones are:

1. It's simple to use and enables for quick data validation

Machine learning is used to identify patterns in data. To construct intelligent algorithms, a machine learning engineer is responsible
for obtaining, processing, refining, cleaning, organising, and making sense of data. Python is a simple language to learn. While
linear algebra and calculus topics might be quite difficult, they need the most effort. Python can be swiftly implemented, allowing
machine learning developers to quickly evaluate a concept.

2. Python is known for its immense libraries

Python's access to many libraries is one of the key reasons it is the chosen language for machine learning. A library is a set of
functions and procedures that may be used by a computer language. Having access to a variety of libraries helps developers to
do complicated tasks without having o rewrite a large number of lines of code. Python libraries make it easier for data scientfists to
conduct numerous research since machine learning depends largely on mathematical optimization, probability, and statistics.
Here are some of the Python libraries you may use:

° Pandas: is recommended for high-level data structures and analysis.
° StatsModels: it is used for statistical methods, data exploration, and a variety of other applications.
° Keras: known for its use in deep learning.
° Matplotlib: for developing 2D plots, histograms, charts, and other graphs.
3. A low entry barrier

There is a global shortage of programmers. Python is a simple language to learn with a low entrance barrier. What does this imply 2
More data scientists will be able to master it fast, allowing them to participate in machine learning initiatives. Python is, believe it or
not, remarkably close to the English language, making it easy to learn. You can comfortably work with complicated systems
because fo its simple phrase structure.

4. Distinguished for its flexibility

Why is Python the best language for machine learning? Because it allows us a lof of flexibility. Python may be used in conjunction
with other programming languages by developers to achieve their objectives. The source code does not need to be recompiled.
Any modifications may be made instantaneously, allowing for quick viewing of the outcomes. Because of Python's versatility, the
chances of problems developing are quite low.

5. ltis versatile

Testing is a crucial aspect of software development. Python for machine learning runs on almost any platform, including Windows,
macOSs, Linux, Unix, and a slew of others. What is the significance of this?2 Because you can run tests on any platform, it makes
testing a breeze. To prepare their code for multiple platforms, your developers only need to utilize Pylnstaller, for example. Python
can help you save a lot of time and money when it comes to machine learning.
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6. It's legible
Python is simple to read, so any Python developer may readily implement, duplicate, or distribute it anytime a code update is
necessary. It removes ambiguity, errors, and competing paradigms, resulting in more efficient algorithm intferchange, idea sharing,
and tool sharing between Al and machine learning specialists. There are also applications like IPython that provide further
functionality like testing, debugging, tab completion, and so forth. Parallel application development, execution, debugging, and
interactive monitoring are all possible.

7. Python is becoming even more popular

Python is quickly becoming the most widely used programming language on the planet. Python is the programming language of
choice for many well-known organizations, like Facebook, Google, Quora, Amazon, and Netflix, fo mention a few, due to its
simplicity, adaptability, and ease of maintenance. Machine learning, artificial inteligence, and robotics are just a few of the
infriguing and new technologies that employ it.

Python is also in great demand at institutions, where it is quickly becoming the most popular infroductory language. It's also
something that a lot of seasoned developers learn to add to their skill set. The more companies and individuals who utilize Python,
the better. More resources are being developed around it, assisting developers in completing complicated jobs without
encountering code issues.

8. Large support community

Python has a large community of supporters, and it's comforting to know that if you have an issue, someone will be able to assist
you. Python is an open-source language, which means that it has a large library of resources that can be utilized by both
beginners and experts.

Many regularly occurring topics are discussed in Python forums and communities, and Python documentation is available online. If
you run into an issue that you cannot handle on your own, you can always ask a question and get help from other developers



2. Linear Regression with Python

Simple Linear Regression with scikit — learn

Let's start with the most fundamental case: basic linear regression. When using linear regression, there are five main procedures to
follow:

1. Import the necessary packages and classes.

2. Provide data to work with, and then do the necessary fransformations.
3. Develop aregression model and test it against historical data.

4. Check the model fitting results to see if the model is suitable.

5. Use the model to make predictions.

The majority of regression techniques and implementations follow these phases [49].



2.1. Step 1: Import packages and classes

The first step is to import the package numpy and the class LinearRegression from sklearn.linear_model:

Python

import numpy as np
from sklearn.linear_model import LinearRegression

You now have access to all of the features you'll need to run linear regression. NumPy's most basic data type is numpy.ndarray,
which is an array type. The term array is used throughout this text to refer to instances of the numpy.ndarray type. The class
sklearn.linear_model.LinearRegression will be used to perform linear and polynomial regression and make predictions accordingly.



2.2. Step 2: Provide data

The second stage is to define the datfa that will be used. The inputs (regressors, x) and outputs (predictor, y) should both be arrays
(ndarray instances) or comparable objects. This is the most straightforward method of supplying data for regression:

Python

X = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1))
¥y = np.array([5, 2@, 14, 32, 22, 38])

You now have two arrays: an input x array and an output y array. Because this array must be two-dimensional, or to be more
specific, contain one column and as many rows as necessary, you should call.reshape() on x. That is precisely what the.reshape()
parameter (-1, 1) specifies. This is how x and y now appear:

pﬁh on Sree

2> print(x)

{r s}

[15]

[25]

[35]

[a5]

[s51]

*>»> print(y)

[ 5 28 14 32 22 38]

As can be seen, x has two dimensions and x.shape is (6, 1), however y only has one dimension and y.shape is (0, 1). (6,).



2.3. Step 3: Create a model and fit it

The following goal is to construct a linear regression model and fit it to the data. To describe the regression model, let's build an
instance of the class LinearRegression:

Python

model = LinearRegression()
This statement constructs a variable model as a LinearRegression object. LinearRegression accepts a number of optional
parameters:
° fit_intercept is a Boolean (True by default) that determines whether to compute or ignore the intercept b0 (True) (False).

° normalize is a Boolean value (False by default) that determines whether or not the input variables should be normalized (True)
(False).

° copy_X is a Boolean (True by default) that determines whether the input variables should be copied (True) or overwritten
(False) (False).

° n_jobs : The number of tasks utilized in parallel computing is represented by n jobs, which can be an integer or None (default).
None normally denotes one job, whereas -1 denotes the utilization of all processors.

All parameters are set to their default settings in this example. It's time to put the model to work. To begin, you must first call.fit() on
model:

Python

model.fit(x, y)

Using the existing input and output (x and y) as arguments, fit() calculates the best values of the weights bp and by,. fo
put it another way, fit() fits the model. It returns self, which is the model variable. As a result, the final two sentences may be
replaced with the following:

Python

model = LinearRegression().fit(x, y)

The purpose of this statement is the same as the previous two. It is simply that it is shorter.



2.4. Step 4: Get results

After you've fitted your model, you may retrieve the data to see if it's working properly and interpret it. With .score() on model, you
may get the coefficient of determination R?

Python e

»»» r_sq = model.score(x, y)
»>» print(’ coefficient of determination:’, r.sqg)
coefficient of determination: 8.715875613747954

When you're applying .score(), the arguments are also the predictor x and regressor y, and the return value is R2. The attributes of
model are .intercept_, which represents the coefficient, bg and .coef_, which represents by:

Python B

>»> print( intercept:’', model.intercept_)
intercept: 5.633333333333329

»>»> print(°slope:", model.coef )

slope: [8.54]

The code above shows how to obtain by and b;. It's worth noting that .intercept_is a scalar and .coef_is an array. When x is zero,
your model predicts the answer 5.63, as shown by the value by = 5.63 (roughly). The result b; = 0.54 indicates that when x is
increased by one, the projected reaction increases by 0.54. It's worth notfing that you may also supply y as a two-dimensional
array. You'll obtain a similar result in this scenario. This is how it may appear:

Pythc n >

>>> new_model = LinearRegression().fit(x, y.reshape((-1, 1)))
>»> print{‘intercept:’', new_model.intercept_ )

intercept: [5.63333333]

»»> print(’'slope: ', new_model.coef )

slope: [[8.54]]

As you can see, this example is fairly similar to the last one, except .intercept_ is a one-dimensional array with a single element
bo and .coef_is a two-dimensional array with a single element by .



2.5. Step 5: Predict response

Once you've found a model that you like, you may use it to make predictions with existing or new data. Use.predict() to gef the
predicted response:

Python “E

>»> y_pred = model.predict(x)

>»> print(’predicted response:’, y_pred, sep="\n")

predicted response:

[ 8.33333333 13.73333333 19.13333333 24.53333333 29.93333333 35.33333333]

When applying .predict(), you pass the regressor as the argument and get the corresponding predicted response. This is a nearly
identical way to predict the response:

Python EEEN

>»> y_pred - model.intercept_ + model.coef_ * x
»>»> print(’'predicted response:’, y_.pred, sep=‘\n")
predicted responsa:

[[ 8.33333333]

[13.73333333]

[19.13333333]

[24.53333333]

[29.93333333]

[35.33333333]]

In this scenario, model.coef_is multiplied by each element of x, and model.intercept is added to the result. Only the dimensions of
the output alter from the previous example. The expected response is now a two-dimensional array, rather than a one-dimensional
array as before. These two procedures will provide the same result if the number of dimensions of x is reduced to one. When
mulfiplying with model.coef_, you may achieve this by substituting x with x.reshape(-1), x.flatten(), or x.ravel(). Regression models
are frequently used for forecasting in practice. This implies you may utilize fitted models to determine outputs depending on some
new, additional inputs:

Python o

»>»> X_new = np.arange(5).reshape(({-1, 1))
»»> print{x_new)
(rej
[1]
[2]
[3]
[4]]
»>>» y_new = model.predict(x_new)
»»» print(y_new)
[5.63333333 6.17333333 6.71333333 7.25333333 7.79333333]

Here .predict() returns the result y when applied to the new regressor x_new. This example makes use of numpy's arange() function
to create an array containing members ranging from 0 (inclusive) to 5 (exclusive), i.e. 0, 1, 2, 3, and 4.
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1. Step 1 and 2: Import packages and classes and provide data

First, you import numpy and sklearn.linear_model.LinearRegression and provide known inputs and output:

Python

import numpy as np
from sklearn.linear_model import LinearRegression

x = [[e, 1], [5, 1], [15. 2], [25, 5], [35, 11], [45, 15], [55, 34], [6@, 35]]
y = [4, 5, 28, 14, 32,22, 38, 43]
X, ¥ = np.array(x), np.array(y)

That's a simple way to define the input x and outfput y. You can print x and y to see how they look now:

Python e

333 print{x)
([e 1]

[ 5 ]
[15 2]
[25 5]
[35 11]

[45 15]

[55 34]

[6e 35]]
>»> print(y)
[ 4 5 28 14 32 22 38 43]

x is a two-dimensional array with af least two columns in multiple linear regression, whereas y is normally a one-dimensional array.
This is a simple multiple linear regression example, with x having precisely two columns.



2. Step 3: Create a model and fit it

The next step is to create the regression model as an instance of LinearRegression and fit it with .fit():

Python

model = LinearRegression().fit(x, y)

The variable model refers to the object of type LinearRegression as a result of this statement. It indicates the regression model that
has been fitted to the data.



3. Step 4: Get results

You can obtain the properties of the model the same way as in the case of simple linear regression:

Python =

»>»> r_sq = model.score(x, y)

>»> print(’coefficient of determination:’', r_sq)
coefficient of determination: @.8615939258756776
»»» print( intercept:', model.intercept )
intercept: 5.5225792751981%

»>»> print(‘slope:’, model.coef )

slope: [@.44786965 8.25582548]

Using .score() you obtain the value of R? and the values of the estimators of regression coefficients with .intercept_ and .coef_.
Again, .intercept_ holds the bias by, while now .coef_is an array containing b, and b, respectively.

The intercept in this case is around 5.52, which is the value of the projected response when x; = x2 = 0. The projected response rises
by 0.45 when x1 is increased by one. When x2 increases by one, the response increases by 0.26.



4. Step 5: Predict response

Predictions also work the same way as in the case of simple linear regression:

Python EE

»»» y_pred = model.predict(x)

»>>» print(’predicted response:’, y_pred, sep="\n")

predicted response:

[ 5.77768476 8.012953 12.73867497 17.9744479 23.97529728 29.4668957
38.78227633 41.27265086]

The predicted response is obtained with .predict(), which is very similar to the following:

Python EE

>»> y_pred = model.intercept_ + np.sum(model.coef_* x, axis=1)

>»> print('predicted response:’, y_pred, sep="\n")

predicted response:

[ 5.77768476 8.012853 12.73867497 17.9744479 23.97529728 29.466@957
38.78227633 41.27265086]

You can predict the output values by multiplying each column of the input with the appropriate weight, summing the results, and
adding the intercept to the sum. You can apply this model fo new data as well:

Python e

>»» X_new = np.arange(1@).reshape((-1, 2))

»»» print(x_new)

[[e 1]

[2 3]

[4 5]

[6 7]

(& 9]]

>>> y_new = model.predict(x_new)

>»> print(y_new)

[ 5.77760476 7.18179502 B8.58598528 9.99017554 11.3943658 ]

That is the prediction using a linear regression model.
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1. Step 1: Import packages and classes

In addition fo numpy and sklearn.linear_model.LinearRegression, you should also import the class PolynomialFeatures from
sklearn.preprocessing:
Python

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures

The import is now done, and you have everything you need to work with.



2. Step 2a: Provide data

This step defines the input and output and is the same as in the case of linear regression:

Python

X = np.array([5, 15, 25, 35, 45, 55]).reshape{(-1, 1))
y = np.array([15, 11, 2, 8, 25, 32])

Now you have the input and output in a suitable format. Keep in mind that you need the input to be a two-dimensional array.
That's why .reshape() is used.



3. Step 2b: Transform data

This is the new step you need to implement for polynomial regression. As you've seen earlier, you need to include x? (and perhaps
other terms) as additional features when implementing polynomial regression. For that reason, you should transform the input array
x to contain the additional column(s) with the values of x? (and eventually more features).

It's possible to transform the input array in several ways (like using insert() from numpy), but the class PolynomialFeatures is very
convenient for this purpose. Let's create an instance of this class:

Python

transformer = PolynomialFeatures(degree=2, include_bias=False)

The variable transformer refers to an instance of PolynomialFeatures which you can use to fransform the input x. You can provide
several optional parameters to PolynomialFeatures:

° degree is an integer (2 by default) that represents the degree of the polynomial regression function.

° interaction_only is a Boolean (False by default) that decides whether to include only interaction features (True) or all features
(False).

° include_bias is a Boolean (True by defaulf) that decides whether to include the bias (intercept) column of ones (True) or not
(False).

This example uses the default values of all parameters, but you'll sometimes want to experiment with the degree of the function,
and it can be beneficial to provide this argument anyway. Before applying transformer, you need to fit it with .fit():

Python

transformer. fit(x)

Once fransformer is fitted, it's ready to create a new, modified input. You apply .transform() to do that:

Python

¥_ = transformer.transform(x)

That's the tfransformation of the input array with .transform(). It takes the input array as the argument and returns the modified
array. You can also use .fit_transform() to replace the three previous statements with only one:

Python

x_ = PolynomialFeatures(degree=2, include_bias=False). fit_transform(x)

That's fitting and transforming the input array in one statement with .fit_transform(). It also takes the input array and effectively
does the same thing as .fit() and .fransform() called in that order. It also returns the modified array. This is how the new input array
looks:

Python P

> print(x_)
{f 5. 2s.
[ 15. 225,
25. 625,
35. 1225.
45. 2825.
55. 3025.

Bkt Rttt

— -

The modified input array contains two columns: one with the original inputs and the other with their squares.






4. Step 3: Create a model and fit it

This step is also the same as in the case of linear regression. You create and fit the model:

Python

model = LinearRegression().fit(x_, y)

The regression model is now created and fitted. It's ready for application. You should keep in mind that the first argument of .fit() is
the modified input array x_ and not the original x.



5. Step 4: Get results

The properties of the model may be obtained in the same manner as linear regression properties can be obtained:

p,rthgn ==

3> r_sq = model. score(x_, y)

»>>»> print(’coefficient of determination:’; r_sq)
coefficient of determination: @.8988516262498564
»»» print(‘intercept:', model.intercept )
intercept: 21.372321428571425

#»» print{’coefficients:", model.coef )
coefficients: [-1.32357143 @.82839286]

Again, .score() returns R. Its first argument is also the modified input x_, not x. The values of the weights are associated to
.intercept_and .coef_: .intercept_represents by, while .coef_ references the array that contains b, and b, respectively. You can
obtain a very similar result with different fransformation and regression arguments:

Python

%x_ = PolynomialFeatures(degree=2, include_bias=True).fit_transform{x)

If you call PolynomialFeatures with the default parameter include_bias=True (or if you just omit it), you'll obtain the new input array
x_ with the additional leftmost column containing only ones. This column corresponds to the intercept. This is how the modified
input array looks in this case:

p)’thﬂl'l B

=33 print{x_)

[[1.06Q8e+B0 5.088c+88 2.580e+81]
[1.880e+28 1.580e+81 2.258e+82]
[1.000e+86 2.580e+81 6.250e+02]
[1.006e+86 3.508e+01 1.225e+83]
[1.2e0e+80 4.560e+@1 2.825e+83]
[1.008e+80 5.508e+81 3.825e+83]]

The first column of x_ contains ones, the second has the values of x, while the third holds the squares of x. The intercept is already
included with the leffmost column of ones, and you don’t need to include it again when creating the instance of LinearRegression.
Thus, you can provide fit_intercept=False. This is how the next statement looks:

Python

model = LinearRegression(fit_intercept=False).fit(x_, y)

The variable model again corresponds to the new input array x_. Therefore x_ should be passed as the first argument instead of x.
This approach yields the following results, which are like the previous case:

Pythan b

>»> r_sq = model.score(x_, ¥)

>»> print(‘'coefficient of determination:’, r_sq)
coefficient of determination: ©.8088516262498565
»»» print( intercept:’, model.intercept )
intercept: @.@

»>»» print('coefficients:’, model.coef )
coefficients: [21.37232143 -1.32357143 9.82839286]

You see that now .intercept_is zero, but .coef_ actually contains bg as its first element. Everything else is the same.






6. Step 5: Predict response

If you want to get the predicted response, just use .predict(), but remember that the argument should be the modified input x_
instead of the old x:

py-tho n e

»>>> y_pred = model.predict(x_)

>>> print(’predicted response:’, y_pred, sep="\n")

predicted response:

[15.46428571 7.98714286 6.82857143 9.82857143 19.38714286 34.46428571]

As you can see, the prediction is nearly identical to that of linear regression. It just needs the updated input rather than the original.
If you have many input variables, you may use the same fechnique. You'll have a mulfi-column input array, but everything else
remains the same. Let’s see the next example:

Python

# Step 1: Import packages

import numpy as np

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures

# Step 2a: Provide data

x = [[®, 1], [5, 11, [15, 21, [25, 5], [35, 11], [45, 15], [5S, 34], [6e, 35]]
y = [4, 5, 20, 14, 32, 22, 38, 43]

X, y = np.array(x), np.array(y)

# Step 2b: Transform input data
%_ = PolynomialFeatures(degree=2, include bias=False).fit_transform(x)

# Step 3: Create a model and fit it
model = LinearRegression().fit(x_, y)

# Step 4: Get results
r_sq = model.score(x_, y)
intercept, coefficients = model.intercept_, model.coef_

# Step S5: Predict
y_pred = model.predict(x_)

This regression example yields the following results and predictions:

Python e

>»> print(’'coefficient of determination:’, r_sq)

coefficient of determination: ©.9453701440127822

>»> print('intercept:’, intercept)

intercept: @.8430556452395734

»>»> print(’'coefficients:", coefficients, sep="'n")

coefficients:

[ 2.44B28275 ©.16168353 -8.15259677 ©.47928683 -0.4641851 ]

»»» print( 'predicted response:’, y_pred, sep="\n')

predicted response:

[ ©.54847488 11.36348283 16.87869622 15.79139 20.738586190 23.50834636
39.85631386 41.923390846]

In this case, there are six regression coefficients (including the infercept), as shown in the estimated regression function f(x;, x) = bg

+b1x1 + boxg + baxi2 + baxixe + bsxa? . You'll also observe that, for the identical issue, polynomial regression produced a greater

coefficient of determination than multiple linear regression. At first glance, getting such a high R may appear to be a fantastic
achievement. It's possible. In real-world scenarios, however, a sophisticated model with an RZ near to 1 might indicate overfitting.
You should evaluate a model's performance with new data, that is, observations that were not utilized to fit (train) the model.
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1. Step 1: Import packages

You must first do some imports. You must also import statsmodels.api in addition fo numpy:

Python

import numpy as np
import statsmodels.api as sm

You now have all of the packages you require.



2. Step 2: Provide data

You may provide inputs and outputs in the same way that you did with scikit-learn:

Python

x = [[e, 1], [5, 1], [15, 2], [25, 5], [35, 11], [45, 15], [55, 34], [6e, 35]]
y = [4, 5, 28, 14, 32, 22, 38, 43]
X, ¥y = np.array(x), np.array(y)

Although the input and output arrays have been created, the work is not yet complete. If you want statsmodels to calculate the
intfercept b0, you must include the column of ones in the inputs. By default, b0 isn't taken into consideration. This is simply one call

to a function:

Python

x = sm.add constant(x)

That's how you add the column of ones to x with add_constant(). It takes the input array x as an argument and returns a new array
with the column of ones inserted at the beginning. This is how x and y look now:

Python

*¥> print(x)

ir

[
[
[
[
[

—_
(R S O Sy o S g O

[

8.
5.
. 15,
« 25,
. 33.
. 45,
Y
. 68,

[y
W o W R e

W
&

35,

*»» print{y)
[ 24 5 2014

R = ]

>

32 22 38 43]

You can see that the modified x has three columns: the first column of ones (corresponding fo by and replacing the intercept) as

well as two columns of the original features.



3. Step 3: Create a model and fit it

The class statsmodels.regression.linear model.OLS represents a regression model based on ordinary least squares. Here's how you
can get one:

Python

model = sm.OLS(y, %)

You must use caution in this situation. Please note that the output is the first parameter, followed by the input. There are a few more
options available. You may apply .fit() on your model once it's been created:
Python

results = model.fit()

By calling .fit(), you obtain the variable results, which is an instance of the class

statsmodels.regression.linear_model.RegressionResultsWrapper. This object contains a wealth of information on the regression
model.



4. Step 4: Get results

The object containing detailed information about the outcomes of linear regression is referred fo as the variable results. Although it
is beyond the scope of this essay to explain them, you will discover how to extract them here. You may receive the table with the
results of linear regression by calling .summary():

Pyth{'m E=5

»»» print(results.summary())
OLS Regression Results

e e e e e ]

Dep. Variable: ¥ R-sgquared: 8.862
Model: OLS  Adj. R-squared: @.8e6
Method: Least Squares F-statistic: 15.56
Date: Sun, 17 Feb 2819 Prob (F-statistic): 8.28713
Time: 19:15:87 Log-Likelihood: -24.316
Ho. Observations: 8 AIC: 54.63
Df Residuals: 5 BIC: 54.87
Df Model: 2

Covariance Type: nonrobust
ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
coef std err t P>|t| [e.e25 8.975]

canst 5.5226 4.431 1.246 @.268 -5.867 16.912
x1 B.4471 B8.285 1.567 9.178 -8.286 1.188
x2 @.2558 @.453 @.563 8,598 -8.918 1.428
e )
Omnibus: 8.561 Durbin-Watson: 3.268
Prob(Omnibus): 8.755 Jarque-Bera (J8): 2.534
Skew: 8.388 Prob(38): 8.766
Kurtosis: 1.987 Cond. Mo. 80.1
ss=ssssssssssssssssssssssssssssssSssSsSSssssssssssssssssssssssssssssssssssassas
Warnings:

[1] standard Errors assume that the covariance matrix of the errors is correctly speci

This table contains a lot of information. RZ, by, b1, and by are some of the statistical values related with linear regression. In this
situation, you may receive a warning about kurtosistest. Due to the minimal number of observations supplied, this is the case. Any
of the values in the table above can be extracted. Here's an illustration:

Python 5
>»> print(’coefficient of determination:’, results.rsquared)
coefficient of determination: ©.8615939258756777
>»> print('adjusted coefficient of determination:’; results.rsquared_adj)
adjusted coefficient of determination: ©.8862314962259488
»>» print(’'regression coefficients:', results.params)
regression coefficients: [5.52257928 ©.44706965 B.25502548]
This is how you get some of the linear regression results:
e  .rsquared holds R2.
° rsquared_adj represents adjusted R? (R? corrected according to the number of input features).

° .params refers the array with bg, by, and b, respectively.

You'll also observe that these results are similar to those produced for the same issue using scikit-learn.






5. Step 5: Predict response

Using .fittedvalues or .predict() with the input array as the parameter, you may get the predicted response on the input values
used to create the model:

PYt.hOI'I Fesy

>»» print('predicted response:’, results.fittedvalues, sep="\n")

predicted response:

[ 5.77768476 8.812953 12.73B67497 17.9744479 23.97529728 29.4668957
38.78227633 41.27265086]

>»> print(’predicted response:’, results.predict(x), sep="\n")
predicted response:

[ 5.7776@476 8.812953 12.73867497 17.9744479 23.97529728 29.4668957
38.78227633 41.27265006]

For known inputs, this is the predicted response. You may also use if you decide to make predictions using new regressors. new
data as the parameter to predict():

Pythc-n B

>»> Xx_new = sm.add_constant(np.arange(1@).reshape((-1, 2)))

»>>»> print{x_new)

[[1. 8. 1.]
[3= 2. 3.
[1. 5.]
[1. 7.1
[1. 9.]1]

>»> y_new = results.predict(x_neu)

>>» print(y_new)

[ 5.7776@476 7.18179502 B8.58598528 9.99017554 11.3943658 ]

- = T

You'll see that the predicted outcomes for the same issue are identical fo those generated using scikit-learn.

Linear regression isn't always the best choice, especially for complicated nonlinear models. There are, fortunately, additional
regression approaches that may be used in circumstances when linear regression fails. Support vector machines, decision frees,
random forests, and neural networks are a few of them.

There are a slew of Python libraries that use these approaches to do regression. So, python is one of the most popular
programming languages for machine learning for this reason.

Other regression approaches can be used in a similar way to what you've seen with the scikit-learn package. It includes support
vector machines, decision trees, random forests, and other classes, as well as techniques. fit(),.predict(),.score(), and so on are only
a few examples.
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1. Cost Function in the Linear Regression

The cost function, also known as the loss function, is the function that may be reduced (or increased) by changing the decision
variables [48]. Under the surface, many machine learning approaches handle optimization challenges. They usually alter the
model parameters to reduce the difference between actual and expected outcomes (like weights and biases for neural networks,
decision rules for random forest or gradient boosting, and so on).

In a regression problem, the vectors of input variables x = (xj, ... x;) and the actual outputs y are commonly used. You're looking for
a model that relates x to a predicted response f(x) that is as close to y as feasible. For example, you could want to forecast a
person's income based on inputs such as their number of years at the organization or their degree of schooling.

The objective is to keep the difference between the prediction f(x) and the actual data y as little as possible. The residual is the
term for this difference.

You aim to minimize the sum of squared residuals (SSR) in this kind of problem, where SSR = I;(y; - f(x))2 for all observationsi=1, ..., n
where n is the total number of observations. Instead of SSR, you might calculate the mean squared error (MSE = SSR / n).

The square of the difference between the actual and predicted outputs is used by both SSR and MSE. The smaller the difference,
the more precise the forecast. When the difference is zero, then the prediction is equal to the actual data.

The model parameters are adjusted fo minimize SSR or MSE. For instance, if you want to find the function f(x) = bg+ bx; + ... + b,
in linear regression, you must first define the weights bg, by, ..., b, that minimize SSR or MSE.

Consider a drop of water flowing down the edge of a bowl or a ball rolling down a hill to comprehend the gradient descent
process. Until they reach the bottom, the drop and the ball tend to proceed in the direction of the quickest reduction. They will
gain accelate and momentum.

Gradient descent works in a similar way: you start with an arbitrarily determined position of the point or vector v = ( vy, ..., v¢ Jand
move it repeatedly in the direction of the cost function's quickest decline. This is the direction of the negative gradient vector, - \(
\bigtriangledown \) C, as previously stated.

You update or relocate it to a new place in the direction of the negative gradient (v \( \rightarrow \) v —=\(\eta \) \(
\bigtriangledown \)C , where \( \eta \) (pronounced “ee-tah”) is a small positive value called the learning rate, after you have
a random starting point v = ( vy, ..., vy ).

The update or moving step size is determined by the learning rate. This is a crucial parameter. If \( \eta \) is foo small, the method
may take along time to converge. Large \( \eta \) values can potentially cause problems with convergence or divergence in the
method.

This is a simple version of the procedure that starts with an arbitrary position, pushes it foward the minimum repeatedly, and returns
a location that is hopefully at or near the minimum:

Python

def gradient_descent(gradient, start, learn_rate, n_iter):
vector = start
for _ in range(n_iter):
diff = -learn_rate * gradient(vector)
vector += diff
return vector

gradient_descent() takes four arguments:

° gradient is the function or any Python callable object that takes a vector and returns the gradient of the function you're
frying fo minimize.

° Start: the point from which the algorithm starts its search is called the start
° learn_rate: is the learning rate that controls the magnitude of the vector update.

° n_iter: is the number of iterations.



This function does exactly what it says on the fin: it takes a beginning point (line 2), iteratively updates it based on the learning rate
and gradient value (lines 3-5), and then returns the latest position obtained. You may add another termination condition before
using gradient_descent():

Python

import numpy as np

def gradient_descent(
gradient, start, learn_rate, n_iter=5@, tolerance=1e-86

vector = start
for _ in range(n_iter):
diff = -learn_rate * gradient(vector)
if np.all{np.abs(diff) <= tolerance):
break
vector += diff
return vector

You now have the additional parameter tolerance (line 4), which specifies the minimal allowed movement in each iteration.
You've also defined the default values for tolerance and n_iter, so you don't have to specify them each time you call
gradient_descent().

Lines 9 and 10 enable gradient_descent() to stop iterating and return the result before n_iter is reached if the vector update in the
current iteration is less than or equal to tolerance. This often happens near the minimum, where gradients are usually very small.
Unfortunately, it can also happen near a local minimum or a saddle point.

Line 9 uses the convenient NumPy functions numpy.all() and numpy.abs() to compare the absolute values of diff and tolerance in
a single statement. That's why you import numpy on line 1.

Now that you have the first version of gradient_descent(), it's time to test your function. You'll start with a small example and find
the minimum of the function C = v2.

The derivative 2v is the gradient of this function, which contains just one independent variable (v). If's a differentiable convex
function, and finding its minimum analytically is simple. Analytic differentiation, on the other hand, may be difficult, if not
impossible, in practice, and is frequently approximated with numerical approaches. To test your gradient descent implementation,
you simply need one statement:

Python ]

>»> gradient_descent(
- gradient=lambda v: 2 * v, start=18.08, learn_rate=g.2
- )

2.218739197287331e-86

You use the lambda function lambda v: 2 * v to provide the gradient of v2. You start from the value 10.0 and set the learming rate
to 0.2. You get aresult that's very close to zero, which is the correct minimum.

The learning rate is a very important parameter of the algorithm. Different learning rate values can significantly affect the behavior
of gradient descent. Consider the previous example, but with a learning rate of 0.8 instead of 0.2:

Python g

»»» gradient_descent(
gradient=lambda v: 2 * v, start=10.8, learn_rate=08.8

- )

-4.77519666596786e-87

Small learning rates can result in very slow convergence. If the number of iterations is limited, then the algorithm may return before
the minimum is found. Otherwise, the whole process might take an unacceptably large amount of time. To illustrate this, run
gradient_descent() again, this fime with a much smaller learning rate of 0.005:



Py{hoﬂ e

»>»> gradient_descent(
gradient=lambda v: 2 * v, start=10.8, learn_rate=0.865

cee)
6.0850060671375367

The search process starts at v = 10 as before, but it can’t reach zero in fifty iterations. However, with a hundred iterations, the error
will be much smaller, and with a thousand iterations, you'll be very close to zero:

p‘_'{'[hO n e

»»> gradient_descent(
gradient=1lambda v: 2 * v, start=10.8, learn_rate=8.805,
n_iter=100

)
3.668323412732204

»>»> gradient_descent(
gradient=1ambda v: 2 * v, start=10.8, learn_rate=8.005,
n_iter-10e8

weia )
2.8884317124741065828

»>»> gradient_descent(
AR gradient=lambda v: 2 * v, start=10.8, learn_rate=9.205,
o n_iter-268@

=
09,052518840647663e-85

Nonconvex functions might have local minima or saddle points where the algorithm can get trapped. In such situations, your
choice of learning rate or starting point can make the difference between finding a local minimum and finding the global
minimum.

Consider the function v*- 5v2- 3v. It has a global minimum in v = 1.7 and a local minimum in v = -1.42. The gradient of this function is
4v3- 10v - 3. Let's see how gradient_descent() works here:

Python >

»>» gradient_descent(
it gradient=lambda v: 4 * v**3 - 18 * v - 3, start=@,
i learn_rate=0.2

|
-1.4207567437458342

During the first two iterations, your vector was moving toward the global minimum, but then it crossed to the opposite side and
stayed trapped in the local minimum. You can prevent this with a smaller learning rate:

Python >

»>»» gradient_descent(

gradient=1ambda v: 4 * v**3 - 18 * v - 3, start=@,
; learn_rate=0.1

)
1.285401330315467

A lower learning rate prevents the vector from making significant leaps, therefore it remains closer to the global optimum in this
situation.

It's difficult to change the learning rate. You can't know the best value in advance. Many strategies and heuristics have been
developed to assist with this. Furthermore, during model selection and assessment, machine learning practitioners frequently adjust
the learning rate.

Aside from the learning rate, the starting point can have a substantial impact on the solution, especially for nonconvex functions.
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1. General description

Outlier detection is a critical tool in the use of machine learing approaches in advanced manufacturing. It enables the prompft
discovery of irregularities, which can lead to cost savings for the particular firm. Furthermore, product quality control is an essential
component of a product processing plant's manufacturing line. Machine learning technologies can improve quality control.

Assume you're a machine learning specialist who works for a huge winery. The management wants o improve the quality of its
products by incorporating machine learning algorithms info the specific process. You are asked to put in place an acceptable
model to accomplish this purpose using a dataset of old measurements of quality measurements of wine batches of the past
years.

Instructions:

There are many outlier detection techniques in the literature that can be applied in different scenarios and different datasets.
Finding the best one that is suitable for each case might be a challenging process that requires trying different techniques to find
out which one is more fitting.

1. Download the csv file from the following link (password: dt@mml)

https://versions.aimms.gr/index.php/s/YLNnsaDxwS5YSEECZ

2.  Load the downloaded csv file (dataset3.csv) and apply different outlier detection techniques as the following scripts suggest.

3. Copy and paste the following notebook to your python IDE and follow the instructions to accomplice the exercise
requirements. You should fill the missing_parts of the exercise as dictated in the provided comments.




# Exercise 3 — OUTLIER DETECTION
# Z-SCORE, DBSCAN and VISUALIZATION TECHNIQUES
# Complete the missing code by implementing the necessary commands.

# For this project, you will need the NumPy library, the stats library, the pandas library, the
DBSCAN and the IsolationFprest from sklearn.cluster, the seaborn library, the pyplot from
matplotlib

# However, before importing it, you must first install the library into Python.

# Read the instructions on how to do that (it might be a bit trickier than usuall)

# IMPORT LIBRARIES HERE (trivial but necessary...)
import

import

import

from

from matplotlib import pyplot as plt

from statsmodels.graphics.gofplots import ggplot

#
# Load the 'wine' dataset (Dataset 3)

#

# ADD COMMAND TO LOAD TRAIN AND TEST DATA HERE TO DATAFRAME
ineData =

#
# Now, let’s try some outlier detection methods.
# Try all the methods that are presented below.
#
# Z-SCORE METHOD - Using Z score method,we can find out how many standard deviations
value away from the mean.

# If the z score of a data point is more than 3 (because it cover 99.7% of area), it indicates
that the data value is quite different from the other values. It is taken as outliers.

#
# ADD COMMANDS TO CONFIGURE THE LEARNER HERE
out=[]

def Zscore_outlier(df):
m = np.mean(df)
sd = np.std(df)
foriin df:
z = (i-m)/sd
if np.abs(z) > 3:
out.append(i)
print("Outliers:",ouf)
Zscore_outlier(wineData['']) # YOU CAN TRY APPLY IT FOE DIFFERENT COLUMNS OF THE
DATASET OR THE WHOLE DATASET. WHAT DO YOU OBSERVE?2?2

# DBSCAN METHOD (DENSITY-BASED SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE)
# DBSCAN is a density-based clustering algorithm that divides a dataset info

# subgroups of high-density regions and identify high-density regions cluster as

# outliers. Here cluster -1 indicates that the cluster contains outliers and the

# rest of the clusters have no outliers. This approach is similar fo the K-mean

# clustering. There are two parameters required for DBSCAN. DBSCAN gives the best

# result for multivariate outlier detection.

# 1. epsilon: a distance parameter that defines the radius to search for nearby neighbors.




# 2. The minimum amount of points required fo form a cluster.

def DB_outliers(df):

outlier_detection = DBSCAN(eps = 2, metric="euclidean’, min_samples = 5)

clusters = outlier_detection.fit_predict(df.values.reshape(-1,1))

datal'cluster'] = clusters

print(data['cluster].value_counts().sort_values(ascending=False))
DB_outliers(wineData['clorides']) # WHICH COLUMN OF THE DATASET WILL YOU CHOOSE?
#

# Visualization of the Data might be another outlier detection technique if you are using the
right tools.

# BEGIN WITH BOX PLOT
def Box_plots(df):
plt.figure(figsize=(10, 4))
plt.title ("Box Plot")
sns.boxplot(df)
plt.show()
Box_plots(wineData['clorides])
Box_plots(wineData['volatile acidity'])
# which other column would you choose to visualize with ggplote What do you notice2 Do
the outliers that you can see the same as the above ones?

def hist_plots(df):
plt.figure(figsize=(10, 4))
plt.hist(df)
plt.title ("Histogram Plot")
plt.show()
hist_plots(wineData['clorides'])

def scatter_plots(df1,df2):

fig, ax = plt.subplots(figsize=(10,4))

ax.scatter(df1,df2)

ax.sef_xlabel('Age')

ax.sef_ylabel('Fare')

plt.title ("Scatter Plot")

plt.show()
scatter_plots(wineData['free sulfur dioxide'], wineData['clorides'])
# This is for combining two different values

def gg_plots(df):
plt.figure(figsize=(10, 4))
qgplot(df line='s')
plt.fitle ("Normal QQPlot")
plt.show()
qqg_plots(wineData['clorides])




2. Desired objectives:

Implement more complex machine learning models
Deal with a real-life problem solution of machine learning

Advanced plot making



3. Required material

For the execution of this task, you need to:

1. Install Python 3 Release according to your operation system.
Windows
macOs

other

2. A python IDE is required or you can use Google Colab [1]

[1] Colab allows anybody to write and execute arbitrary python code through the browser, and is especially well suited to
machine learning, data analysis and education.



4. Other requirements

There are no other special requirements for the execution of this exercise.
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Python implements a number of complex machine learning methods. Simple k Nearest Neighbor (kNN), Decision Trees,
Classification, Clustering, and Simple Vector Machine are the most prevalent (SYM). However the kNN and Decision frees
algorithms are the most well-known and widespread algorithms with many applications in the developed industry and will be
analyzed in deftail.




Table of contents

1. Importing the abalone dataset
2. Descriptive statistics from the abalone dataset

3. Use a mathematical definition of distance to define "nearest"



1. Importing the abalone dataset

The Abalone Dataset will be used. You could download it and then use pandas to import it into Python, but it's far faster to let
pandas handle it for you. You may use pandas to import the data as follows:

Python e

>»» import pandas as pd
33 url = (
"https://archive.ics.uci.edu/ml/machine-learning-databases”
- “/abalone/abalone.data”

-)

>>> abalone = pd.read_csv(url, header=None)

You import pandas first, then use it to read the data in this code. If you make the path a URL, the file will be downloaded straight
from the Internetf. You may perform a fast check fo ensure that you've imported the data correctly as follows:

pyf_hon Do

>»> abalone.head()

a 1 2 3 4 5 6 7 8
M 8.455 ©.365 @.e95 @.514e ©.2245 @.1ele e.158 15
8.350 ©.265 0.899 @.2255 ©.9995 ©.e485 0.07e 7
8.538 ©.42¢ 0.135 @.677@¢ ©.2565 ©0.1415 0.218 9
M ©.448 ©.365 0.125 e.516e ©.2155 @.114¢ @.155 1e
I .33 ©.255 0©.e80 ©.2050 ©.9895 ©.0395 @.055 7

TR X RS ]
m

This should display the first five lines of the Abalone Dataset, which has been imported as a pandas DataFrame in Python. The
column names are still lacking, as you can see. The abalone.names file in the UCI machine learning repository contains those
names. You may include them in your DataFrame in the following way:

Python b

»>»> abalone.columns = [
"sex",

"Length”,
“piameter”,
“Height",

"Whole weight™,
“Shucked weight™,
“"Viscera weight”,
"Shell weight”,
"Rings”,

The imported data should now be easier to comprehend. However, there is one more thing you need do: eliminate the Sex
column. The present experiment's purpose is to utilize physical measures to estimate the abalone's age. You should exclude sex
from the dataset because it is not a strictly physical parameter. Using.drop:, you may remove the Sex column.

Python P

»»> abalone = abalone.drop("Sex”, axis=1)



2. Descriptive statistics from the abalone dataset

With this code, the Sex column is removed because it adds no value to the models.
The abalone dataset's descriptive statistics.

When it comes fo machine learning, you need fo know what kind of data you're dealing with. Here are some exploratory data
and graphs, without getting intfo too much detail.

You can begin with Rings, which is the exercise's objective variable. A histogram will provide you with a fast and informative
summary of the age ranges to expect:

Python >

>»> import matplotlib.pyplot as plt
»»» abalone["Rings"].hist(bins=15)
»>» plt.show()

This code creates a fifteen-bin histogram using the pandas charting functionality. A few attempts led to the decision to employ
fiffeen bins. When deciding on the number of bins, you should aim for a balance of neither foo many nor too few observations
each bin. A histogram with too few bins may obscure certain patterns, whereas a histogram with too many bins may lack
smoothness. The histogram may be seen in the graph below:
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The histogram demonstrates that the majority of abalones in the sample had between five and fifteen rings, but that up to twenty-
five rings are feasible. In this dataset, elder abalones are underrepresented. This makes sense, because age distributions are
skewed in this way owing to natural processes.

A second worthwhile investigation is o see which factors, if any, have a strong relationship with age. A substantial connection
between an independent variable and your aim variable is a positive indicator, since it confirms the relationship between physical
measures and age.

In correlation_matrix, you may see the entire correlation matrix. The correlations with the farget variable Rings are the most
significant. You can get those correlations by doing something like this:



Python >

»»» correlation_matrix = abalone.corr()
»»» correlation matrix["Rings"]

Length 8.556720

Diameter 8.574668
Height 8.557467
Whole weight @.548398
Shucked weight @.428884
Viscera weight 2.583819
Shell weight 8.627574
Rings 1.e8c8e0
Mame: Rings, dtype: float6d

Examine the correlation coefficients between Rings and the other factors now. The closer they are to one, the stronger the link.

You may deduce that there is some relationship between physical measures of adult abalones and their age, although it isn't
particularly strong. Because of the significant correlations, you may expect a simple modeling approach. In this scenario, you'll
have to experiment with the kNN method to see what results you can get.

In comparison to other machine learning algorithms, the kNN algorithm is a little unusual. Each machine learning model has its own
formula that must be calculated, as you saw before. The k-Nearest Neighbors approach is unique in that the formula is determined
at the fime of prediction rather than at the fime of fitting. This is not the case with the majority of other models.

When a new data point is added, the kNN method begins by finding the new data point's nearest neighbors, as the name implies.
After that, it utilizes the values of those neighbors as a forecast for the new data point.

Consider your neighbors as an intuitive illustration of why this works. Your neighbors are frequently similar to you. They're most likely
from the same socioeconomic background as you. Perhaps they work in the same field as you, or their children attend the same
school as yours, and so on. However, for particular activities, this method is ineffective. It wouldn't make sense, for example, to
forecast your favorite color by looking at your neighbor's.



3. Use a mathematical definitfion of distance to define "nearest"

You can use a mathematical model of distance called Euclidean distance to locate the data points that are closest to the point
you need to predict. To understand this concept, you must first understand what the term "difference of two vectors" means. See
the following example:

Two-dimensional Distance

Height
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Two data points are shown in this diagram: blue at (2,2) and green at (4,4). To find the distance between them, start by multiplying
two vectors together. Vector a connects points (4,2) and (4,4), whereas vector b connects points (4,2) and (4,4) to point (2,2). The
colorful spots on their heads denote their heads. They're at a 90-degree angle, as you can see.

This figure shows two data points: blue at (2,2) and green at (4,4). Start by multiplying two vectors together to calculate the
distance between them.

The vector ¢, which runs from the head of vector a to the head of vector b, is the difference between these two vectors. The
distance between your two data points is represented by the length of vector c.

The norm refers to the length of a vector. The vector's magnitude is indicated by the norm, which is a positive number. The
Euclidean formula may be used to get the norm of a vector:

d(a,b) = /(@ — b1)? + (az — by)? + (a3 — b3)? + -+ (an — by)?

The distance is calculated using this formula by taking the squared differences in each dimension and then taking the square root
of the sum of those values. To get the distance between the data points, you should compute the norm of the difference vector
C.

To apply this to your data, you must first understand that the data points are vectors. The distance between them may then be
calculated by determining the difference vector's norm. NumPy's linalg.norm() may be used to calculate this in Python. For an
example:

Python S

»»» import numpy as np
»»> a = np.array([2, 2])
>»> b = np.array([4, 4])
»3»» np.linalg.norm{a - b)
2.8284271247461903

In this code block, you define your data points as vectors. You then compute norm() on the difference between two data points.
This way, you directly obtain the distance between two multidimensional points. Even though the points are multidimensional, the
distance between them is still a scalar, or a single value.
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Description

You may use this to identify the nearest neighbors of a point on which you want to make a prediction now that you know how to
compute the distance from any point to any point.

You must determine the number of neighbors, which is provided by k. k has a minimum value of one. This signifies that only one
neighbor will be used to make the prediction. The number of data points you have is the maximum. This entails utilizing all of your
neighbors. The user is in charge of determining the value of k. As you'll see in the last section of this course, optimization tools can
help you with this.

Return to the Abalone Dataset to identify the nearest neighbors in NumPy. As you can see, you'll need to set distances on the
vectors of the independent variables, so use the .values attribute to convert your pandas DataFrame into a NumPy array:

Python b
»>> X = abalone.drop(“Rings”, axis=1)

*»>» X = X.values

>»> y = abalone[“Rings"]

>>> ¥y = y.values

This code block creates two objects: X and y, each of which now has your data. Your model's independent variables are X and 'y,
respectively. It's worth noting that X is written with a capital letter, whereas y is written with a lowercase letter. Because
mathematical notation utilizes a capital letter for matrices and a lowercase letter for vectors, this is frequently done in machine
learning programs. This is how you can make the NumPy array for this data point:

Python e

»>» new_data_point = np.array([
@.569552,

446487,

.154437,

.816849,

.430@51,

.222526,

.201208,

= ® @ = @ ©

o b)
The next step is o use the following code to calculate the distances between this new data point and each of the data points in
the Abalone Dataset:

Python e

>»> distances = np.linalg.norm(X - new_data_point, axis=1)

So now, you have a vector of distances and must determine which three neighbors are the closest. You'll need to find the IDs of
the minimum distances to do this. You may sort the array from lowest to highest using the .argsort() function, and you can get the
indices of the k closest neighbors by taking the first k elements:

py-[ho n e

> k=3

»»> nearest_neighbor ids = distances.argsort()[:k]
»»> nearest_neighbor_ ids

array([4e45, 1982, 1644], dtype=int32)



This informs you which of your new data point's three neighbors are the closest. You'll learn how to fransform those neighbors info
an estimate in the next paragraph.
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1. Voting or averaging of multiple neighbors

After you've determined the indices of your abalone's three closest neighbors, you'll need to integrate them into a prediction for
your new data point. As a starting step, you must gather the following facts about those three neighbors:

Python >

>»> nearest_neighbor_rings = y[nearest neighbor_ids]
>»> nearest_neighbor_rings
array([ 9, 11, 1e])

You'llintegrate the values for those three neighbors intfo a prediction for your new data point now that you have them. For
regression and classification, combining the neighbors into a prediction works differently.



1.1. Average for regression

The target variable in regression issues is a number. By averaging the target variable values of numerous neighbors, you may make
a single forecast. You can do so by following these steps:

python e

»»» prediction = nearest_neighbor_rings.mean()

For prediction, you'll earn a score of ten. This suggests that your new data point's 3-Nearest Neighbor prediction is 10. You may
repeat the process for as many new abalones as you wish.



1.2. Mode for classification

The target variable in classification tasks is categorical. As previously stated, categorical variables cannot be averaged. What
would the average of three anticipated automobile manufacturers be, for example? It'd be impossible to say that. On class
predictions, you can't use an average.

In the case of categorization, you should instead use the mode. The mode is the value that appears the most frequently. This
means that you count all of your neighbors' courses and keep the most common one. The value that appears the most frequently
among the neighbors is the prediction.

There are various solutions if there are different modes. You might choose a final winner from among the winners at random. You
might alternatively base your final selection on the distances between neighbors, in which case the nearest neighbors' mode
would be preserved.

The SciPy mode() function may be used to calculate the mode. Because the abalone example isn't a classification case, the
following code demonstrates how to compute the mode for a toy example:

Python

>»> import scipy.stats

»»> class_neighbors = np.array(["A", "B", "B", "C"])

»»> scipy.stats.mode(class_neighbors)
ModeResult{mode=array(['B'], dtype="<Ul1'), count=array([2]))



2. Fitting kNN in Python using scikit-learn

While learning to code an algorithm from scratch is beneficial, it is rarely practical while working on a machine learning problem. In
this part, you'll learn how to utilize scikit-learn, one of Python's most extensive machine learning tools, to build the kNN method.

Your abalone kNN model's quality will be assessed. You had a technical focus in the previous parts, but now you'll take a more
pragmatic and results-oriented approach. There are other methods for assessing models, but the train-test split is the most frequent.
When evaluating a model with a train-test split, you divide the dataset info two parts:

1. Training data : The model is fitted using training data. This signifies that the training data will be utilized as neighbors in the kNN
algorithm.

2. Test data: The model is evaluated using test data. It implies you'll estimate the number of rings on each abalone in the test
data and compare those estimates to the known real number of rings.

The data may be divided into fraining and test sets in Python using scikit-learn’s built-in train_test_split():

Python >

»>»» from sklearn.model_selection import train_test_split
»>» X_train, X test, y_train, y_test = train_test_split(
X, y, test_size=8.2, random_state=12345

The test_size refers to the amount of observations you infend o include in both the fraining and test data sets. When you choose a
test_size of 0.2, your test_size will be 20% of the original data, leaving the remaining 80% as fraining data.

The random_state parameter allows you to get consistent results every time you execute the code. The train test split() function
creates a random split in the data, which makes it difficult o reproduce the findings. As a result, random state is frequently used. In
random state, the value is chosen at random.

The data is divided into training and test data in the code above. For objective model evaluation, this is required. You can now
use scikit-learn to fit a kNN model to the training data.



2.1. Using scikit-learn to fit a kNN regression on the abalone dataset

To fit a scikit-learn model, you must first create a model of the right class. You must also select settings for your hyperparameters at

this time. You must choose a value for k in the kNN algorithm, which is denoted n neighbors in the scikit-learn implementation. This is
how you do it in Python:

Python e

»»» from sklearn.neighbors import KNeighborsRegressor

>»>> knn_model = KNeighborsRegressor(n_neighbors=3)

With knn model, you may make an unfitted model. To predict the value of a future data point, this model will use the three closest
neighbors. You can next fit the model on the fraining dataset to get the data into the model:

Ph’thﬂn eSS

»>»> knn_model.fit(X_train, y_train)

You may let the model learn from the data by using .fit(). kNN model now has everything necessary to generate predictions on
new abalone data points. That's all the Python code you'll need to fit a kNN regression.



2.2. Examining the model fit using scikit-learn

However, simply fitting a model isn't enough. In this part, you'll learn about some of the functions that may be used to assess the fit.
There are a variety of regression assessment metrics available, but you'll choose one of the most prevalent, the root-mean-square
error (RMSE). The following formula is used to calculate the RMSE of a prediction:

1. Calculate the difference between the actual and predicted values for each data point.
2. Take the square of the difference for each difference.

3. Add all of the squared differences

4. Calculate the square root of the total sum.

To begin, assess the prediction error using the training data. This implies that you utilize the training data to make a prediction, so
you know the outcome will be acceptable. The RMSE may be calculated using the following code:

Python F

>»> from sklearn.metrics import mean_squared_error
»»» from math import sqrt

>»> train_preds = knn_model.predict({¥_train)

>»> mse = mean_squared_error(y_train, train_preds)
»»> rmse = sqri{mse)

¥ Pmse

1.65

Using the knn_model that you fitted in the previous code block, you compute the RMSE in this code. For the time being, you'll
compute the RMSE using the tfraining data. You should assess the performances on data that isn't included in the model for a more
realistic outcome. As a result, you separated the test set for the time being. With the same function as previously, you can assess
the predicted performance on the test set:

Python S

»»» test_preds = knn_model.predict(X_test)

»>>> mse = mean_squared_error(y_test, test_preds)
»>>» rmse = sgrt(mse)

»>> rmse

2237

This code block evaluates the error on data that the model hasn't seen yet. This RMSE is somewhat greater than previously since it is
more realistic. Because the RMSE represents the average inaccuracy of the predicted age, you may interpret this as an error of
1.65 years on average. It's difficult to say if an improvement from 2.37 to 1.65 years is significant. At the very least, you're coming
closer to approximating the age appropriately.

You've only used the scikit-learn kNN algorithm out of the box up until now. You haven't done any hyperparameter adjustment and
have chosen k at random. Between the RMSE on the training data and the RMSE on the test data, there is a significant difference.
This indicates that the model is overfitted to the training data and so does not generalize well. At this stage, there's no need o be
concerned.



3. kNN Algorithm in Python — The Model to Predict Abalone Age

Worthy of mention in the abalone dataset. Many abalones' ages are recorded in this dataset. Abalones are small sea snails that
resemble mussels in appearance. Cutting an abalone's shell and counting the number of rings on the shell can reveal its age.
Many abalones' ages, as well as a variety of other physical measurements, may be found in the Abalone Dataset.

The project's objective is to create a model that can estimate an abalone's age only based on other physical measures.
Researchers would be able to measure the age of the abalone without having to break its shell and count the rings. To determine
the most accurate prediction score, you'll use a kNN.

The same steps could be applied to the manufacturing world and for example predict the age of battery and therefore its
remaining useful lifetime.
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1. Reading the data and importing the libraries

Libraries and classes that are necessary must be imported [59].

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Ematplotlib inline#fo

from sklearn.prepr i impe LabelE eriifor train test splitting
from s 5 E trai

from sklearn ort DecisionTreeClass #for che

from sklearn.metrics import class] tion_report, conf

from sklearn.tree import plot_tree

Load the dataset now. The IRIS dataset may also be found in the seaborn library. You may use the following command fo import it:

#reading the data
df = sns.load dataset('iris')

df.head()

You should be able to obtain the information shown above. With one target column species, we have four feature columns:
sepal_length, sepal_width, petal_length, and petal_width. Now go ahead and do some simple operations on it.

#getting information of dataset

df.infol)

According to the following command, this dataset comprises 150 records, 5 columns, the first four of which are of type float and
the last of which is of type object str, and there are no NAN values:

df.isnull().any()

On this dataset, we now run some basic EDA. Let's look at how all of the aspects relate to one another:

# let's plot pair plot to visualise the attributes all at once

sns.pairplot(data=df, hue = 'species')
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Setosa, versicolor, and virginica are the three species we aim to predict. Setosa always creates a distinct cluster than the other
two, as can be seen.

# correlation matrix

sns . heatmap(df.corr())
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The following is what we can see from the two graphs above:
Setosa generates a unique cluster every time.

Petal length and width are inextricably linked.

Sepal length is not related to sepal width.



2. Data processing

The target variable (y ) and features(X) will now be separated as follows:

target = df['species’]

dfl = df.copy()
dfl = dfl.drop('species’, axis =1)

It's best not fo remove or add additional columns from the original dataset. Make a copy of it and then edit it so that if things don't
go as planned, we have the original data with which to restart with a new strategy. We are storing df in X only to follow a well
accepted norm.

# Defining the attributes
X =dfl

Let's have a look at our target variable now. We will encode categorical variables in numeric values for working with the target.

#label encoding
le = LabelEncoder()

target = le.fit_transform(target)

target

Setosa:0, versicolor:1, virginica:2 are the encodings we obtain. Target is renamed to y in order to adhere to the normal naming
pracfice.

y = target

Creating training and testing sets from the dataset. 20 percent of the records were chosen at random for testing.

X train, X test, y ai 3 est = train test splitc(X , v,

random state = 4 int {"ITraining split input- ", X train,.zshape)
print ("Testing split input- ", X test.shape)

We have 120 records (rows) for training and 30 records (rows) for testing after splitting the dataset.



3. Modelling the tree and testing it

# Defining the decision tree algorithmdtree=DecisionTreeClassifier()

dtree.fit(X train,y_train)print('Decision Tree Classifier Created')

We generated an object of the type DecisionTreeClassifier in the preceding code and stored its address in the variable diree so
that we could access it using diree. Then we use our X frain and y frain to suif this tree. Finally, the statement Decision Tree Classifier
is printed. After the decision tree has been constructed, this object is created.

# Predicting the values of test data
y_pred = dtree_predict(X_test)

print("Classification report - \n", classification_report(y_test,y_pred))

On a test dataset of 30 records, we achieved a 100% accuracy rate. Let's draw the confusion matrix like this.

test, y_pred)
plt.figure (figsize=(5,5))sns.heatmap {data=cm, linewidths=.5, an-
rue, sguare Irue, cmap = 'Blues')plt.ylabel ("Actual label'}

label {'Fredicted label'}all sample title = 'Accuracy Score: {0}'.for-




4. Visualizing the decision tree

Using the following instructions, we can plot the tree we created directly:

# Visualising the graph without the use of graphvizplt.figure(figsize =

dec tree = pln:ut__tree{-:i:ecisiu:m__tr ree, feature names = dfl.columns,
class name tosa™, "vercicolor™, "wverginica™]
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1. Decision Trees vs KNN

In this section a comparison between the 2 algorithms is given [50].

A. They're both non-parametric. As a result, the data distribution cannot be determined using only a few parameters. In other
words, decision frees and KNNs make no assumptions about the data distribution.

B. Both may be used to solve problems involving regression and classification.
C. KNN does not provide automated feature interaction, although decision frees do.

D. Although decision trees are faster, KNN is slower with large datasets since it scans the entire dataset to predict and does not
generalize the data beforehand.
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1. General description

Fruitex Inc. is a fruit processing and packaging factory. In one of the production lines, which processes peaches, the sorting of the
fruit into acceptable or not is done by humans. The company's management decided to automate the process and use the
benefits of machine learning to sort the fruit, reducing both the chance of error and the production costs in the long run. You, as
an expert in machine learning and an employee of Fruitex Inc., analyzed the data and concluded that the variables related to
the quality of the fruit are directly related to its image, and for this reason, you proposed the installation of cameras in the
production line that will return the necessary information. With the help of fruit quality experts, you created a dataset to use to train
a machine learning model.

Instructions:
1. Download the csv file from the following link (password: dt@mml)

https://versions.aimms.gr/index.php/s/0BeKYYIj6MXScc8

2. Load the downloaded csv file (dataset2.csv) and apply a Decision Tree algorithm by testing different values of the split
function (criterion) and max depth parameters. The code to output the model, as defined by the metric Accuracy, Precision,
Recall, F1, and create a free ploft.

3.  Apply the Random Forest algorithm by testing different parameter values split function (criterion) and the number of trees
(n_estimators). The code to output the model, as defined by the metric Accuracy, Precision, Recall, F1. In addition, to create 4
graphs (one for each metric), which will show the performance of the model (y-axis) as it changes the number of frees in a
Random Forest model (x-axis, from 1 to 200 frees).

Indicative results from the experiments are to be recorded in the table below.

a/a Algorithm Criterion | Max depth | Accuracy Precision Recall F1

1 Decision Tree

2 Decision Tree

3 Decision Tree

4 Decision Tree

5 Decision Tree

6 Decision Tree

. Number of . .
a/a Algorithm X Criterion | Accuracy Precision Recall F1
Estimators
1 Random Forest
2 | Random Forest
3 | Random Forest
4 | Random Forest
5 | Random Forest
6 | Random Forest
. Number of o .
a/a Algorithm . Criterion | Accuracy Precision Recall F1
Estimators




1 Random Forest

2 | Random Forest

3 | Random Forest

4 | Random Forest

5 | Random Forest

6 | Random Forest

4. Copy and paste the following notebook to your python IDE and follow the instructions to accomplice the exercise
requirements. You should fill the missing_parts of the exercise as dictated in the provided comments.




# e
# Exercise 2a - DECISION TREES

# DECISION TREE ALGORITHM TEMPLATE

# Complete the missing code by implementing the necessary commands.
#

# From sklearn, we will import:

# 'metrics' package, for measuring scores

# 'tree' package, for creating the DecisionTreeClassifier and using graphviz
# 'model_selection' package, which will help test our model.

#

# IMPORT NECESSARY LIBRARIES HERE
import pandas as pd

from sklearn import

# Load the data
#

# ADD COMMAND TO LOAD DATA HERE
fruits = pd.read_csv('../input/dataset2.csv') # change the path according to the location

#
# Get samples from the data, and keep only the feafures that you wish.

# Decision trees overfit easily from with a large number of features! Don't be greedy.
numberOfFeatures = 10

X = fruits.datal:, :numberOfFeatures]

y = fruits.target

# DecisionTreeClassifier() is the core of this script. You can customize its functionality

# in various ways, but for now simply play with the ‘criterion' and 'maxDepth’ parameters.

# 'criterion’: Can be either 'gini' (for the Gini impurity) and 'entropy' for the information gain.

# 'max_depth': The maximum depth of the tree. A large depth can lead to overfitting, so start with
a maxDepth of

# e.g. 3, and increase it slowly by evaluating the results each time.

D ——

# ADD COMMAND TO CREATE DECISION TREE CLASSIFIER MODEL HERE
model =

#
# The function below will split the dataset that we have into two subsets. We will use

# the first subset for the training (fitting) phase, and the second for the evaluation phase.

# By default, the frain set is 75% of the whole dataset, while the test set makes up for the rest 25%.
x_train, x_test, y_frain, y_test = model_selection.train_test_split(X, y)

# Let's train our model.
#

# ADD COMMAND TO TRAIN YOUR MODEL HERE

#

# Ok, now let's predict the output for the test input set




#

# ADD COMMAND TO MAKE A PREDICTION HERE
y_predicted =

# Time to measure scores. We will compare predicted output (from input of x_test)

# with the frue outfput (i.e. y_test).

# You can call 'recall_score()', 'precision_score()', '‘accuracy_score()', 'f1_score()' or any other
available metric

# from the 'metrics' library.

# The 'average' parameter is used while measuring metric scores to perform a type of averaging
on the data.

#

# ADD COMMANDS TO EVALUATE YOUR MODEL HERE (AND PRINT ON CONSOLE)
orint()

orint()
orint()
orint()

#

# By using the 'plot_tree' function from the tree classifier we can visualize the trained model.

# There is a variety of parameters to configure, which can lead to a quite visually pleasant result.
# Make sure that you set the following parameters within the function:

# feature_names = fruits.feature_names[:numberOfFeatures]

# class_names = fruits.target_names

# filled = True

#

model.plot_free

mmmmmpafhsﬂﬂﬂ

ﬂul = Im'qn

mean texture 5 19.83 m-mmsﬂm
gini =048 gini = 0.491
umplu =48
value = [28, 20]
class = rnaligm

gini= El L]
samples = 4
value = [2.2]
class = mahgnanl




# Exercise 2b - DECISION TREES
# RANDOM FOREST ALGORITHM TEMPLATE
# Complete the missing code by implementing the necessary commands.

#

# From sklearn, we will import:

# 'datasets’, for our data

# 'metrics' package, for measuring scores

# 'ensemble’ package, for calling the Random Forest classifier

# 'model_selection’, (instead of the 'cross_validation' package), which will help validate our
results.

#

# IMPORT NECESSARY LIBRARIES HERE

from sklearn import

# Load the data

#

# ADD COMMAND TO LOAD DATA HERE

fruits =

# Get samples from the data, and keep only the features that you wish.

# Decision frees overfit easily from with a large number of features! Don't be greedy.
numberOfFeatures = 10

X = fruits.datal:, :numberOffeatures]

y =

# Split the dataset that we have into two subsets. We will use




# the first subset for the training (fitting) phase, and the second for the evaluation phase.

# By default, the frain set is 75% of the whole dataset, while the test set makes up for the rest
25%.

# This proportion can be changed using the 'test_size' or 'train_size' parameter.

# Also, passing an (arbitrary) value to the parameter random_state' "freezes" the splitting
procedure

# so that each run of the script always produces the same results (highly recommended).
# Apart from the frain_test_function, this parameter is present in many routines and should be
# used whenever possible.

x_train, x_test, y_frain, y_fest =

# RandomForestClassifier() is the core of this script. You can call it from the 'ensemble’ class.

# You can customize its functionality in various ways, but for now simply play with the 'criterion’
and 'maxDepth' parameters.

# 'criterion’: Can be either 'gini' (for the Gini impurity) and 'entropy' for the Information Gain.

# 'n_estimators': The number of trees in the forest. The larger the better, but it will take longer fo
compute. Also,

# there is a critical number after which there is no significant improvement in the results

# 'max_depth': The maximum depth of the tree. A large depth can lead to overfitting, so start
ith a maxDepth of

# e.g. 3, and increase it slowly by evaluating the results each time.

#

# ADD COMMAND TO CREATE RANDOM FOREST CLASSIFIER MODEL HERE

model =

# Let's train our model.

#

# ADD COMMAND TO TRAIN YOUR MODEL HERE




# Ok, now let's predict the output for the test set

#

# ADD COMMAND TO MAKE A PREDICTION HERE

y_predicted =

# Time to measure scores. We will compare predicted output (from input of the second subset,
i.e. x_test)

# with the real output (output of the second subset, i.e. y_fest).

# You can call 'accuracy_score', recall_score', '‘precision_score', 'f1_score' or any other
available metric

# from the 'sklearn.metrics' library.

# The 'average' parameter is used while measuring metric scores to perform a type of averaging
on the data.

# One of the following can be used for this example, but it is recommended that 'macro' is used
(for now):

# 'micro': Calculate metrics globally by counting the total true positives, false negatives, and
false positives.

# 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take
label imbalance into account.

# 'weighted': Calculate metrics for each label, and find their average weighted by support (the
number of frue instances for each label).

# This alters ‘'macro’ to account for label imbalance; it can result in an F-score that is not
between precision and recall.

#

# ADD COMMANDS TO EVALUATE YOUR MODEL HERE (AND PRINT ON CONSOLE)
orint()
orint()
orint()
orint()

#

# A Random Forest has been frained now, but let's frain more models,
# with a different number of estimators each, and plot performance in terms of
# the different metrics. In other words, we need to make 'n'(e.g. 200) models,

# evaluate them on the aforementioned metrics, and plot 4 performance figures




# (one for each metric).
# In essence, the same pipeline as previously will be followed.

#

# CREATE MODELS AND PLOTS HERE

#




2. Desired objectives

Implement one of the most famous machine learning models
Deal with a real-life problem solution of machine learning

Advanced plot making



3. Required material

For the execution of this task, you need to:

1. Install Python 3 Release according to your operation system.
Windows
macOs

other

2. A python IDE is required or you can use Google Colab [1].

[1] Colab allows anybody to write and execute arbitrary python code through the browser, and is especially well suited to
machine learning, data analysis and education.



4. Other requirements

There are no other special requirements for the execution of this exercise.
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1 Machine Learning Project
1.1 Presentation of the project

This section outlines the project's structure, the data provided, the objective, and
the technique suggested to be used.

1.1.1 Introduction

Prompted by the current energy crisis as well as wanting to follow new tactics on
sustainability and green technologies, an industrial construction company wants
to adopt techniques and materials that will reduce the energy footprint of the
buildings it constructs. To achieve this the company collected data from already
existing buildings in order to analyze them and draw conclusions about the
heating and cooling load. This information will let them estimate the
required heating and cooling units for each industrial unit in order to avoid
the installation of either unnecessary big units or an inadequate amount of
them.

1.1.2 The Data

The data that the leading architect suggested should be the most informative are
the following eight variables:

Relative
Compactness

Surface Area

Roof Area Overall Height

Glazing Area

btz idio Glazing Area distribution

And the target variables will be:

I You can download the dataset here.
[ ]

1.1.3 Objective and methodology

Describin The company decided to hire you and your team as machine learning experts to

g the perform analysis via suitable techniques and present the results to the board. Your
real-wo analysis should be complete and the steps you choose should be justified.
rid Such an analysis is especially important because it actively contributes to an
proble industry's ecological goal. Your main objective is to recommend a precise number of
m heating and cooling units per new building, so that a building maintains livable

conditions while consuming no more energy than necessary.

X
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https://versions.aimms.gr/index.php/s/hMHlymGQU6VCTPM/download

To estimate the quantity of cooling and heating units needed by the firm, it is
required to know the heating and cooling load that each building demands during its
operation. To accomplish this purpose, you must first examine the data presented to
you and how it links to the target data. In other words, we must find a way to predict
the target data considering only the given data.

From real
world to
ML
approach

Because the situation described above is a real-world problem, it encompasses all of
the obstacles that may arise in such a scenario. Some of these issues may include
dealing with unfamiliar data, data that is not homogeneous, or data that displays
strange values with no obvious explanation.
Inadequate data knowledge may be addressed by considering that the main thing is
not necessary to comprehend the substance of a technical word, but to understand
its behavior as data and how it might interact with other data. To do this, we first
select to visualize the data before examining it with tools for discovering
correlations between variables.
But first, we must address the issue of data inhomogeneity by doing the necessary
data preprocessing operations. If we don't, we risk drawing incorrect conclusions or,
worse, ones that we can't comprehend.
Then, based on our understanding, we will then be asked to select a suitable
ML machine learning model. In our scenario, we want to forecast heating and cooling
methodol load values that are real continuous numbers. Will supervised or unsupervised
ogy steps  learning be used?

l Tip: A good ML specialist may use more than one models.

i Afterwards, we must evaluate our findings. This manner, we can see if
our projections are accurate and enhance our word and the company's faith in our
exports. To do this, we must select an appropriate metric and apply it to our
outcome. The following page contains a list of relevant metrics for forecasting real
numbers.

l Tip: A good ML specialist never use one metric.

Finally, keep in mind that all of your labor should be documented and
accompanied by proper explanations for each stage.
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1.1.4 Deliverables
Summarizing all of the above, your deliverables should include the following:

1. Python Notepad with all the processes that you followed.

2. Brief report that documents all the steps that you followed including:
a. Preprocessing of the data

Data understanding and exploration

Data visualization

Data modeling

Evaluation of the results
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1.2 Group challenge

This section contains project logistics as well as a discussion of possible
responsibilities for participants.

1.2.1 Project Logistics
To do this challenge, you will need to form a group with 2-4 other students.
You will be instructed by a teacher on how to perform the challenge.

When your group is finished, the product and the process will be evaluated by a
teacher using the evaluation rubric.

1.2.2 Roles

It is proposed that you split the distinct jobs to make the greatest use of your
resources. More specifically, we propose the following possible roles:

2] @

The Data Analyst The Model Maker

The data analyst is in charge of The model maker is in charge of
pre-processing the data, visualizi locating and applying one or more
it, and inferring the r-"*l.]tlf:.lrl_.hlp suitable machine Ir-drr'nn; models to
between the variables. the data.

The Evaluator

The evaluator is in charge of
supervising the ction of relevant
techniques, ide fing appropriate

metrics and implementing them,
and preparing the final report.

These roles are indicative and may change depending on the composition of
your group. There can for example be two Model Makers or a team member may
have more than one role.

1.3 Goals to reach with the challenge

v Interact with a real-world case scenario and deal with the difficulties that
may occur.

v Understand the physical meaning of the data and how they may interact
with each other.

v Visualize the data using common python tools.
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v Preprocess the data in order to prepare them for further analysis.
v Decide which machine learning model is more suitable for the given data
and the wanted outcome.
v Build the model from scratch using Python tools.
v Train and test the model.
v Evaluate the outcomes of the chosen model using suitable metrics.
v/ Document your work.
Co-funded by the °.®‘:; Page 7 of 13
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1.4 Rubric (evaluation form) for groups of students

After completing the challenge, the instructor(s) will evaluate the work of the students. This rubric will be used to evaluate
competencies and learning outcomes on a 5-point scale of: very poor, poor, average, good, and excellent.

Very poor Needs Improvement As expected Good Excellent
There is no visualization | Some visualization | The student can plot the | The student uses | The student uses
attempt techniques are not | data and can draw some | different techniques to | suitable techniques to

suitable for the given | simple conclusions | visualize different kinds | visualize each variable
or data and have no or | about them. of variables (numerical, | depending on its kind.
poor description. categorical, etc.) and | Also, the student
The student is not able can understand the | manages to visualize
to operate without help plots. combinations of the
from other students/ variables and can figure
teachers. out the possible
correlation status. The
student can interpret

the visualizations.
The student cannot | The student can | The student can | The student can | The student can
understand the concept | understand the concept | suggest a suitable | suggest a machine | suggest a suitable
of a machine learning | of a machine learning | machine learning model | learning problem and | machine learning
model and cannot | model but cannot | for the data. The | demonstrate its benefits | problem and adequately
suggest one without the | suggest a suitable | suggestion may be | contrary to other | argue for his/her choice
active help of other | model for this case. boosted by a | models. as well as suggest

students or the teacher.

constructive discussion
with the teacher or
other students.

alternative approaches.

The student is not able
to train or test the ML
problem.

The student can import
the right Python
libraries but the training
and testing commands
are not suitable for the
use case.

The student can train
and test the machine
learning problem,
probably referring to the
previous exercises of
this lesson.

The student can make
micro-adjustments to
the training and testing
of the model such as the
percentage of the split
of the dataset to train
and test the sample.

The student can train
and test the ML model
and fine-tune it to
provide better results.
The student is also able
to perform advanced
testing techniques.
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The student does not
comprehend the
concept of evaluating
metrics.

The student does
understand the concept
of evaluation metrics
but is unable to provide
a suitable suggestion.

the student can propose
and use one or two
metrics.

The student also
understands the
outcomes and interpret
the numbers.

The student can
understand and
interpret the meaning of
the metrics and apply
fine-tuning to the
original ML model to
receive better results.
Finally, the student can
recognize phenomena
like overfitting.
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The student didn't | The student provided a | The student provided | The student provided a | documenting each step
provide any | little documentation | adequate full report with solid | and suggesting
documentation. that didn't have any | documentation. connection between the | alternatives.

reflection to the theory data with his/her

that he/she has been knowledge.

taught.
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2 Learning Units reference

These Learning units have to be completed before approaching this Project
Work/

TRAINING MODULE LEARNING UNITS

Unit 1:
§1.7 Machine learning for manufacturing applications

Unit 2:

§2.1 What is supervised Learning?
§2.2 Mapping to real-life Manufacturing Cases
§2.3.2 Regression

Unit 4:
84 Regression with Python for ML

3 Learning Outcomes

These Skills and Knowledge will be improved upon the project work completion.

TRAINING MODULE SKILLS AND KNOWLEDGE

MACHINE LEARNING ENIE

(TM3) $1: Understand the basic concepts of an unknown dataset

derived from an unfamiliar field.

$2: Understand an advanced manufacturing problem and
be able to verify if it can be solved via machine learning
techniques.

S3: Understand what field of machine learning is fitting a
use case

S4: Preprocess the given dataset to ensure homogeneity.

S$5: Find a fitting machine learning model for the given use
case

S6: Train a machine learning model using Python

S7: Evaluate a machine learning model using suitable
techniques.

Knowledge
K1: Machine Learning Theory

K2: Basic machine learning types (supervised and
unsupervised)

K3: Basic machine learning techniques (regression,
classification, clustering, association)

K4: Regression algorithms in Python
K5: Basic evaluation metrics of machine learning models.
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4 1oT Lab Resources
4.1 Requirements

To be able to do this challenge, you will need the following things:

- A PCor aLaptop that meets the needs of ML model training Python
Environment.
- Internet access.
- A python IDE is required or you can use Google Colab.
- Installed Python 3 Release according to the operating system.
e Windows
e macOS
e other
- Download the dataset. The dataset can be found here in .csv form.

These 10T lab resources are suggested to complete the project work

- Installed the basic ML and visualization Python libraries in a pre-created
project that the teacher can give to the students.
indicatively and not exclusively:

Pandas

Numpy

Pyplot

Matplotlib

Seaborn

Sklearn
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https://colab.research.google.com/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/macos/
https://www.python.org/download/other/
https://versions.aimms.gr/index.php/s/hMHlymGQU6VCTPM/download

5 The project step by step

To complete successfully the project work you can follow this step sequence.

SEQUENCE WORK Estimated
time

YA OGO RO B Students will read the challenge and make sure they understand all | 2h
problem the requisites asked

STEP 2: Visualize and Students will use the techniques they have learned to check the 6h
understand the data size and the kind of the given data, visualize it and understand how
each variable affects the others.

LY J S M VW ETCR ENGE Il Students will preprocess the data to ensure homogeneity. 2h

OY | = L LTI KT L W Students will study the theory and choose a suitable model to 5h
Machine Learning model implement

Y ARG IHELGCRES AL Students will use Python libraries to train, test, and fine-tune their | 8h
machine learning model model

STEP 6: Evaluate the Students will use suitable evaluation metrics and will share their 8h
Results thoughts about the performance of their model. They may suggest
future improvements for the machine learning model and even to
the data collection attributes.
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